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Abstract—Poisson noise is ubiquitously encountered in ap-
plications including medical and photon-limited imaging. We
consider the problem of recovering and tracking the underlying
Poisson rate, where the rate vector is assumed to lie in
an unknown low-dimensional subspace, with possibly missing
entries. A stochastic approximation (SA) algorithm is proposed
to solve the problem. This algorithm alternates between two
steps. It sequentially identifies the underlying subspace, and
recovers coefficients associated with the subspace. The SA al-
gorithm is then modified to obtain a memory-efficient algorithm
without storing all historic data. Two theoretical performance
guarantees are establish regarding the convergence of SA algo-
rithm. Numerical experiments are provided to demonstrate the
proposed algorithms for Poisson video. The memory-limited SA
algorithm is shown to empirically yield similar performances
to the original SA algorithm.

Index Terms—Poisson noise, subspace tracking, stochastic
approximation

I. INTRODUCTION

For many applications such as X-ray imaging [1], [2] and
photonics [3], a Gaussian noise model is not appropriate. The
observed data in these application is typically characterized
via the Poisson noise model, which significantly differs
from the traditional Gaussian counterpart, and calls for new
processing techniques.

Consider a high-dimensional data stream under Poisson
noise, and the observed data vector yn 2 ZN

+ at each
time n is often modeled as yn ⇠ Pois(zn), where Pois(· )
denotes the vector Poisson distribution, and zn 2 RN

+ is
the rate vector. Furthermore, the data vectors may not be
fully observed due to packet loss, privacy considerations or
missing data in many applications. Therefore, it is vital to
propose online algorithms that can accurately learn and track
the underlying structure of the Poisson model, e.g. changes
in the rates, in both computational- and memory-efficient
manners, as well as being robust to missing data.

In the Poisson compressed sensing (CS) framework, typi-
cally the rate vector is modeled as zn = Axn, where the aim
is to recover the sparse vector xn, whose dimension is much
higher than that of yn, and the sensing matrix A is known a
priori. Algorithms for recovering the rate have been studied
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in [4], and performance bounds for recovering algorithms
have been developed in [5], [6]. The impact of designed
sensing matrix A for Poisson model has been investigated
in [7]. In [2], the Poisson CS framework is extended to
the multiple measurement setting, where it proposes a batch
algorithm to recover multiple sparse vectors {xn}. Similarly,
[8], [9] developed batch algorithms for the Poisson matrix
completion problem, which aims to recover the rate vectors
{zn}, assuming it lies in a low-dimensional subspace. These
batch algorithms become highly insufficient in terms of
computational cost and storage complexity for large-scale
data streams, and do not adapt to changes.

The dictionary model is an effective dimensionality reduc-
tion technique for high-dimensional data such as images and
video sequences, where the data is represented by a linear
combination of the columns of a subspace matrix D and
the dimension of this column subspace is significantly lower
than the ambient dimension of the data. This model has been
successfully applied to image and video processing under
Gaussian noise. In [10], [11], [12], [13], [14], efficient online
algorithms based on Gaussian noise model for subspace
tracking and reconstruction has been considered.

Inspired by the aforementioned work for Gaussian noise
model, this paper pursues the overarching scheme for stream-
ing data under Poisson noise, and proposes online algorithms
for Poisson subspace identification as well as data recon-
struction. We model the streaming data under the Poisson
noise whose parameters possess a subspace representation.
The underlying subspace is identified by minimizing the
expectation of a suitable loss function. The stochastic ap-
proximation (SA) framework [15] is leveraged to develop
the online algorithm, and two steps are derived to solve the
optimization problem. Under a few mild assumptions, we
also establish the convergence of proposed SA algorithm.
However, distinct from the Gaussian model, the formulation
of Poisson statistics prohibit an easy adaptation to a memory-
efficient implementation. Alternatively, we derive a lower
bound of the Poisson log-likelihood to mitigate this issue,
yielding a memory-efficient modification of proposed SA
algorithm which can also handle missing data. The memory-
limited SA algorithm is shown to yield similar performance
to the original SA algorithm. These algorithms have impor-
tant practical applications such as Poisson video, which is
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demonstrated in the experiments.
The paper is organized as follows. In Section II, we first

introduce our model and the problem formulation. In Section
III, we propose the stochastic approximation algorithms, and
develop memory-limited modifications to the SA algorithm,
which also allow for the missing data case. We present the
convergence guarantees of the proposed SA algorithm in
Section IV. Numerical experiments for real Poisson video
are presented in Section V. We conclude the paper in Section
VI.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider the following signal model

yn ⇠ Pois(Dan), n = 1, . . . ,M, (1)

where the n-th observation yn = [yn,1, . . . , yn,N ]

T 2 ZN
+ ,

D = [d1, . . . ,dN ]

T 2 RN⇥K
+ and an 2 RK

+ . Pois(·) denotes
the vector-Poisson distribution, i.e., for vector x 2 RN

+ ,
Pois(x) =

QN
i=1 pois((x)i), where pois(· ) is the common

scalar Poisson distribution with parameter (x)i. Via this
model, the underlying rate zn = Dnan is assumed to reside
in a low-dimensional subspace spanned by the columns of
D, and an specifies the linear combination of columns. Let
pn = [pn,1, . . . , pn,N ]

T 2 {0, 1}N denote a binary mask at
time n, where pn,i = 1 if the i-th entry of yn is observed, and
pn,i = 0 otherwise. Given the sequential full-observations
{yn}Mn=1 or partial-observations {pn�yn,pn}Mn=1 , the goal
is to recover the span of the unknown subspace matrix D

and corresponding rate vectors {zn}Mn=1.
Given the assumed Poisson noise model, we manifest a

loss function with respect to yn and D as

`(yn,D) := min

an2RK
+

⇥
� log Pois(yn;Dan) + �kDk2F + µkank22

⇤
,

(2)
where Pois(yn; (Dan)) denotes the vector Poisson likeli-
hood function with rate Dan, �, µ > 0 are preset regu-
larization parameters, and the terms kDk2F and kank22 are
Tikhonov regularization terms that control the Frobenius
norm of the subspace and `2 norm of the associated co-
efficients.

Motivated by the formulation in [15], the goal is to recover
D by minimizing the expected loss f(D) := Eyn [`(yn,D)]

as
ˆ

D = argmin

D2RN⇥K
+

[f(D)]. (3)

Once ˆ

D is obtained, ˆan can be derived via

ˆ

an = argmin

an2RK
+

[� log Pois(yn;
ˆ

Dan) + µkank22], (4)

and the rate vector can be estimated as ˆ

zn =

ˆ

D

ˆ

an.

III. ALGORITHMS

A. A Stochastic Approximation Algorithm

The problem in (3) is a non-convex stochastic program-
ming, and we seek its solution via leveraging the stochastic

approximation (SA) framework [15]. We first define the
empirical loss at time t as

ft(D) :=

1

t

tX

n=1

`(yn,D). (5)

By the strong law of large number, ft(D) ! f(D) almost
surely (a.s.) as t ! 1.

At each time t, we aim to approximate the problem (3)
via replacing the objective function f(D) by the empirical
loss ft(D). Hence, problem (3) can be approximated as

ˆ

Dt = argmin

D2RN⇥K
+

1

t

tX

n=1

min

an2RK
+

⇥
� log Pois(yn;Dan) + µkank22

⇤

+ �kDk2F . (6)

Invoking the stochastic approximation framework, we aim
to solve problem (6) by alternating between two steps,
nonnegative encoding and subspace update. Specifically, at
time t, we first learn the coefficient vector ˆat, given the new
data yt and previously learned subspace ˆ

Dt�1. Namely, the
estimate ˆ

at is obtained by minimizing the loss function:

ˆ

at = argmin

a2RK
+

� log Pois(yt;
ˆ

Dt�1a) + µkak22. (7)

Once we obtain ˆ

at, the subspace ˆ

Dt is then updated
by minimizing, based on previous estimates {ˆan}tn=1 and
observations {yn}tn=1, the following:

ˆ

Dt = argmin

D2RN⇥K
+

(
�1

t

tX

n=1

log Pois(yn;Dˆ

an) + �kDk2F

)
.

(8)
Note that (8) can be decomposed into a set of smaller
problems for each row of the subspace matrix. Specifically,
the ith row of D can be updated in parallel as

ˆ

dt,i = argmin

di2RK
+

�1

t

tX

n=1

log pois(yn,i;d
T
i ˆan) + �kdik22. (9)

We summarize the proposed stochastic approximate (SA)
algorithm in Algorithm 1. Both (7) and (9) can be solved
efficiently via projected gradient descent. Below we discuss
the details for solving (7), and (9) can be solved similarly.
Specifically, we find ˆ

at iteratively and at the (k + 1)-th
iteration, the update is calculated as

ˆ

a

(k+1)
t = Proj

⇣
ˆ

a

(k)
t � ↵krg(ˆa(k)t )

⌘
,

where g(a) = � log Pois(yt;
ˆ

Dt�1a) + µkak22 and
Proj(a) := max{a, 0} is the projection operator, where max

operator denotes the entry-wise maximization. Moreover, ↵k

is the step size and can be set as:

↵k =

⇣
ˆ

a

(k)
t � ˆ

a

(k�1)
t

⌘T h
rg(ˆa(k)t )�rg(ˆa(k�1)

t )

i

���rg(ˆa(k)t )�rg(ˆa(k�1)
t )

���
2

2

following [16]. The regularization parameters � and µ can
be empirically determined via cross-validation and a random
initialization D0 can be utilized.
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Algorithm 1 Stochastic Approximation (SA)

Input: Data {yn}Mn=1, �, initialization D0

Output: Subspace estimates { ˆDt}Mt=1 and {ˆat}Mt=1

1: for t = 1 to M do
2: Estimate the coefficient ˆat by the following optimiza-

tion via projected gradient descent:

ˆ

at = argmin

a2RK
+

� log Pois(yt;
ˆ

Dt�1a) + µkak22;

3: Update each row of the subspace ˆ

Dt by the following
optimization via projected gradient descent:

ˆ

dt,i = argmin

di2RK
+

�1

t

tX

n=1

log Pois(yn,i;d
T
i ˆan) + �kdik22.

4: end for

B. Memory-limited SA Algorithm

When the data vectors are partially observed,
we can replace the log-likelihood in (6) byPN

i=1 pn,i log Pois(yn,i;d
T
i an) and modify accordingly.

However, the optimization in (9) requires to store all
previous {ˆan} and {yn}, yielding a significant storage
cost, particularly when t is large. In order to mitigate this
issue, we modify the SA algorithm to a memory-limited
algorithm that only demands a storage of sufficient statistics
of previous data, which is more appealing when the data
index is large.

In order to facilitate the derivation, we make two assump-
tions.
A1) D 2 C2 where C2 ⇢ RN⇥K

+ is a compact set.
A2) There exist positive constants a and b such that 0 < a 
(Dan)i  b, for all n and i.

In other words, we assume that entries of Dan are
bounded. The first one essentially assumes that D has
bounded entries and this is a very mild assumption for
real applications. The second assumption is used to exclude
the singular case, where some Poisson rates asymptotically
approach zero. Similar assumption has also been utilized in
[2], [5].

Our goal is to derive a memory-limited SA algorithm for
Poisson data that only demands storing sufficient statistics
of previous data, which is more appealing for streaming ap-
plications. Unfortunately, the Poisson log-likelihood function
prohibits such an easy adaptation. Rather than dealing with
the original Poisson log-likelihood function, we will establish
an upper bound which is more amenable for memory-limited
implementations and the upper bound the Poisson log-
likelihood function is derived in the following proposition.

Proposition 1. With previous assumptions, we have the
following bound

�
tX

n=1

pn,i log Pois(yn,i;d
T
i an)  d

T
i

 
tX

n=1

pn,ian

!

�
 

tX

n=1

pn,iyn,i

!
log

"
d

T
i

 
tX

n=1

pn,iyn,ian

!#

+

tX

n=1

pn,i log(yn,i!)

+

 
tX

n=1

pn,iyn,i

!"
log

 
tX

n=1

pn,iyn,i

!
+ T

#
, (10)

where T is a constant only depending on a and b, as in
assumption A2.

Replacing the log-likelihood function by the above upper
bound, then the rows of the subspace D can be similarly
updated in parallel as

ˆ

dt,i = argmin

di2RK
+

d

T
i st,i � �t,i log(d

T
i ert,i) + �kdik22. (11)

where st,i =

1
t

Pt
n=1 pn,iˆan, �t,i =

1
t

Pt
n=1 pn,iyn,i,

and rt,i =

Pt
n=1 ˆanpn,iyn,i. Hence, we can formulate

a memory-limited SA algorithm with missing data that
alternates between estimating ˆ

at and updating ˆ

Dt, which
is referred as the memory-limited SA algorithm. It is easy
to see that the memory-limited SA algorithm only requires
a storage independent of time index t. The algorithm is
summarized in Algorithm 2.

Algorithm 2 Memory-Limited Stochastic Approximation for
Poisson Streaming Data with Missing Data

Input: Data {yn}Mn=1, �, initialization D0, es0,i = 0, e�0,i =

0 and er0,i = 0 for all 1  i  N .
Output: Subspace estimates { ˆDt}Mt=1 and {ˆat}Mt=1

1: for t = 1 to M do
2: Estimate the coefficient ˆat by the following optimiza-

tion via projected gradient descent

ˆ

at = argmin

a2RK
+

�
NX

i=1

pt,i log Pois(yt,i;d
T
i a) + µkak22;

3: Update the sufficient statistics, for 1  i  N , as

e
st,i =

t� 1

t
e
st�1,i +

1

t
pt,iˆat, (12)

e�t,i =
t� 1

t
�t,i +

1

t
pt,iyt,i, (13)

e
rt,i = ert�1,i + ˆ

atpt,iyt,i; (14)

4: Update each row of the subspace ˆ

Dt by the following
optimization via projected gradient descent,

ˆ

dt,i = argmin

di2RK
+

d

T
i est,i � e�t,i log(d

T
i ert,i) + �kdik22.

5: end for

IV. CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis for the
proposed SA algorithm. We first define

`0(yn,D,a) := � log Pois(yn;Da) + �kDk2F + µkak22,
(15)
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and

f 0
t(D) :=

1

t

tX

i=1

`0(yi,D, ˆai). (16)

where ˆ

ai and ˆ

Dt are the output of the SA algorithm 1.
Note that f 0

t(D) captures the empirical loss under the online
algorithm.

In order to facilitate the convergence analysis, in addition
to previous assumptions A1) and A2), we make two further
assumptions: A3) The observations {yn} are supported on a
compact set C1. This essentially assumes that the observed
data is bounded and such an assumption is naturally satisfied
for real data.

Our first theorem states the almost sure convergence of the
SA algorithm that the empirical loss f 0

t(
ˆ

Dt) and the original
loss f( ˆDt) converge to the same limit under the output of
Algorithm 1.

Theorem 1. With assumptions A1-A4, the stochastic pro-
cesses {ft( ˆDt)},{f 0

t(
ˆ

Dt)} and {f( ˆDt)} converge a.s. to the
same limit.

In addition, our second theorem states that the estimated
subspace ˆ

Dt produced by Algorithm 1 also almost surely
converge to a local minimum of f .

Theorem 2. With assumptions A1-A4, consider a sequence
{ ˆDt} such that Theorem 1 holds. Then with probability 1,
ˆ

Dt converges to a local minimum of the expected loss f .

Unfortunately, both the proof techniques for Theorem 1
and 2 can only be applied to SA algorithm 1, and cannot be
easily adapted to proposed memory-limited SA algorithm.
However, Theorem 1 and 2 still serve as a convergence
implication for the online algorithm, provided that the online
algorithm yields similar performances to the SA algorithm.
Moreover, we can show that the gap of the bound in
Proposition 1 does not grow with the increase of time index.
As we present in Sec. V, it is found that the bound is
empirically tight for numerical experiments.

V. EXPERIMENTS

In this section, we showcase the proposed algorithms, i.e.,
the SA and memory-limited SA algorithms on real video
sequences under Poisson noise. The gray-scale video is of a
resolution 50⇥50 with total 250 frames and the nth frame is
regarded as a 2500-dimensional vector zn of its gray scale. In
order to determine the rank of the data [z1, . . . , z250], we use
SVD to calculate the approximate rank. Hence, we set N =

2500, rank K = 40, M = 250, � = 0.2 and µ = 0.1. The
observations are the Poisson counts yn ⇠ Pois(zn), where
each entry of yn is observed independently with probability
p. We compute the relative video reconstruction error at the
nth frame as k ˆDnˆan � znk2/kznk2.

Illustration of original video frame and recovery are show-
cased in Fig. 1. Relative errors of the recovered parameters
via the SA and the memory-limited SA algorithms when
p = 1 and p = 0.5 are shown in Fig. 2, respectively.
It is demonstrated that the performance improves with the

increase of the data stream index. Due to space limitations,
we leave further performance comparisons to the journal
version of this paper [17].

Fig. 1: Illustration of recovered video frame. Top left is the
original video frame. Top right is the Poisson observation.
Bottom left is the recovered video when p = 1. Bottom right
is the recovered video frame when p = 0.5.
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Fig. 2: The relative reconstruction errors for SA and
memory-limited SA algorithms when the data is fully ob-
served with (a) p = 1 and (b) p = 0.5.

VI. CONCLUSION

We have considered the problem of recovering and track-
ing the underlying Poisson rate for streaming data under
Poisson noise, where the rate has been posed to lie in a
low-dimensional subspace structure, possibly with missing
data entries. A stochastic programming has been proposed to
recover the underlying subspace. A stochastic approximation
algorithm has first been derived. The SA algorithm has been
decomposed into two steps where the subspace and its coef-
ficients are sequentially updated with new data. Theoretical
convergence guarantees have been established for the SA
algorithm. The SA algorithm has been proved to converge
to the same point as the original stochastic programming.
In addition, the estimated subspace has been shown to
converge to a local minimum of original objective. In order
to mitigate the storage requirement, the SA algorithm has
been modified to a memory-limited SA algorithm. We have
demonstrated that the memory-limited SA algorithm yields
similar performance to the SA algorithm. Both algorithms
have been showcased to achieve promising performances.
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