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Abstract
We investigate design of general nonlinear func-
tions for mapping high-dimensional data into
a lower-dimensional (compressive) space. The
nonlinear measurements are assumed contami-
nated by additive Gaussian noise. Depending on
the application, we are either interested in recov-
ering the high-dimensional data from the non-
linear compressive measurements, or perform-
ing classification directly based on these mea-
surements. The latter case corresponds to clas-
sification based on nonlinearly constituted and
noisy features. The nonlinear measurement func-
tions are designed based on constrained mutual-
information optimization. New analytic results
are developed for the gradient of mutual infor-
mation in this setting, for arbitrary input-signal
statistics. We make connections to kernel-based
methods, such as the support vector machine.
Encouraging results are presented on multiple
datasets, for both signal recovery and classifica-
tion. The nonlinear approach is shown to be par-
ticularly valuable in high-noise scenarios.

1. Introduction
Dimensionality reduction plays a pivotal role in numer-
ous machine-learning applications, including compres-
sive measurements and feature design (Seeger & Nick-
isch, 2008; Chen et al., 2012; Wang et al., 2013; 2014).
Among those approaches, linear dimensionality reduction
has gained popularity, due to its relatively simple formu-
lation and theoretical analysis (Candès et al., 2006). Lin-
ear measurements may be analyzed in terms of multiply-
ing a signal of interest with a measurement matrix. Ide-
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ally the number of rows of this matrix is small relative to
the dimension of the original data vector, and Gaussian ad-
ditive measurement noise is often assumed (Carson et al.,
2012; Ji et al., 2008). However, the restriction to linear
measurements is limiting, in that many measurement sys-
tems are inherently nonlinear. Further, in the context of
feature design, the assumption of linear features may limit
discrimination quality. The counterpart to linear measure-
ments is to replace each row of the aforementioned mea-
surement matrix by an associated nonlinear measurement
function (Jarrett et al., 2009; Karklin & Simoncelli, 2011;
Xu et al., 2013). Rather than designing multiple rows of
a linear measurement matrix, the objective is to design a
set of nonlinear measurement functions. Nonlinear dimen-
sionality reduction techniques have exhibited better perfor-
mances and flexibility (Schölkopf et al., 1998; Tenenbaum
et al., 2000; Song et al., 2008), relative to linear measure-
ments. However, there has been far less work in the liter-
ature on designing these multiple nonlinear measurement
functions, relative to the vast literature on linear measure-
ments.

Numerous existing nonlinear dimensionality-reduction
methods (Schölkopf et al., 1998; Song et al., 2008) are es-
sentially manifested via the kernel trick or kernel method
(Aizerman et al., 1964), whose idea can be briefly sum-
marized as follows. We consider the classification case,
but similar issues hold for regression. The original data
is believed to not be linearly separable, i.e., there is not
a hyperplane that separates the classes of data. Hence, a
nonlinear function is desired, that maps the original data
to a new feature space of a higher dimension (possibly
much higher, even of infinite dimension). The transformed
data ideally becomes linearly separable in the new high-
dimensional space, in which methods such as Principal
Component Analysis (PCA) or linear Support Vector Ma-
chine (SVM) can be readily employed (Shawe-Taylor &
Cristianini, 2004) (linear methods, applied after nonlinear
transformation). These methods rely on inner products in
the high-dimensional space, and these inner products are
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replaced by a Mercer kernel (Aizerman et al., 1964). This
is the so-called “kernel trick,” in that via invoking a Mercer
kernel to represent inner products, one never has to explic-
itly design or implement the nonlinear mapping function.

The kernel trick significantly simplifies the computations
involved in the nonlinear map and may provide a substan-
tial performance improvement. However, such an improve-
ment is achieved only when a suitable kernel function is
selected, thereby requiring a sophisticated kernel design
method to assure good performance. In cases for which
a special nonlinear structure is needed (Karklin & Simon-
celli, 2011), structural constraints are often difficult to ex-
plicitly impose in the kernel trick.

Another approach for nonlinear dimensionality reduction is
to directly model or learn the nonlinear compressive func-
tion, and design it in a way that the compressed data max-
imally conveys a desired form of information. Among var-
ious information-theoretic metrics, mutual information is
widely utilized (Hild et al., 2006; Kaski & Peltonen, 2003;
Nenadic, 2007). Mutual-information-based linear projec-
tion design for the Gaussian measurement model has been
considered in (Carson et al., 2012) for signal recovery, and
in (Chen et al., 2012) for classification (feature design).
Similar linear projection design has been considered for the
Poisson model (Wang et al., 2013).

We present new theoretical results for gradient of mutual
information under the nonlinear measurement model, for
both signal recovery and classification, extending previous
results that assumed linear measurements (Guo et al., 2008;
Carson et al., 2012; Chen et al., 2012). The results for the
assumption of a linear measurement are recovered as a spe-
cial case of our results. Our theoretical results assume an
arbitrary distribution for the source, and can be applied to
a broad range of applications. In addition to the theoreti-
cal contributions, we demonstrate how the results may be
used in practice, by providing numerical results in the con-
text of compressive image sensing and multi-class classifi-
cation. We demonstrate on multiple datasets that designed
nonlinear measurement functions can yield improved per-
formance relative to linear and random projections as well
as the kernel SVM method, especially in the relatively low
signal-to-noise ratio (SNR) regime.

2. Nonlinear Measurement Model
2.1. Problem Statement

Assume the data X ∈ Rn is drawn from the distribu-
tion PX . In the case for which there is an underlying
class label, PX =

∑T
i=1 PC(C = i)PX|C(X|C = i) =∑T

i=1 πiPX|C(X|C = i), where C is the class label, T is
the total number of classes and C ∼

∑T
i=1 πiδi. We do not

assume a specific form of PX|C and thus a general mix-

ture model for X is considered. We do assume that PC and
PX|C are known or can be estimated from training data.

The nonlinear measurement Y is modeled as

Y = Φ(X) +W, (1)

where Φ : Rn → Rm is a nonlinear measurement function
with (ideally) m� n and W ∼ N (0,Σ) is additive Gaus-
sian noise with zero mean and covariance matrix Σ. We
further assume that Φ admits an expansion under some ba-
sis. In this paper, we mainly focus on the polynomial basis,
i.e., we consider the Taylor expansion of Φ. However, our
theoretical result is valid for arbitrary basis.

Consider a polynomial expansion up to kth order:

Φ(X) =

Φ1(X)
...

Φm(X)

 =


∑

1≤|α|≤k a
(1)
α Xα

...∑
1≤|α|≤k a

(m)
α Xα

 , (2)

where α = [α1, . . . , αn] ∈ Zn+ is the multi-index; Xα :=
Xα1

1 × · · · × Xαn
n and |α| :=

∑
i αi. If we set k = 1,

this reduces to a linear measurement model, like that con-
sidered widely previously (Seeger & Nickisch, 2008; Chen
et al., 2012; Wang et al., 2013; 2014; Candès et al., 2006;
Carson et al., 2012).

Let A ∈ Rm×r denote the coefficient matrix, where
the i-th row of A is consecutively constituted by
a

(i)
α with the dictionary ordering on α, i.e., Ai =

[a
(i)
[1,0,...,0], a

(i)
[0,1,...,0], . . . , a

(i)
[0,0,...,k]]. Similarly, we denote

ψ(X) as the polynomial basis vector where each entry is
sequentially composed byXα with the dictionary ordering,
i.e., ψ(X) = [X1, X2, . . . , Xn, X

2
1 , X1X2, . . . , X

k
n]T ;

there are r terms in ψ(X). In this manner, we can rewrite
the nonlinear measurement function Φ as

Φ(X) = Aψ(X). (3)

Note that ψ(X) is fixed once we set the basis and the ex-
pansion order (while above and in our experiments we fo-
cus on polynomial expansions, the same ideas hold for ar-
bitrary expansions by which ψ(X) is constituted).

We wish to design Φ with the goal of maximizing the
mutual information between random variables X and Y .
This is termed the “signal recovery” problem, as our goal
is to recover the input signal X . Alternatively, we may
be interested in problems for which X|C ∼ PX|C with
C ∼

∑T
i=1 πiδi. Now the objective is to design Φ to max-

imize the information content in Y about the class label C;
we term this the “classification” problem.

In order to design the nonlinear Φ? for signal recovering,
with X ∼ PX and Y |X ∼ N (Φ(X),Σ), we adopt the
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criterion

Φ? = arg max
Φ

I(X;Y ) (4)

= arg max
A

I(X;Y ). (5)

where I(X;Y ) = h(X) − h(X|Y ) = h(Y ) − h(Y |X)
is the mutual information between X and Y , h(X) is the
differential entropy, and h(X|Y ) is the conditional differ-
ential entropy (Cover & Thomas, 2006).

For the classification problem, we adopt the criterion

Φ? = arg max
Φ

I(C;Y ) (6)

= arg max
A

I(C;Y ). (7)

where I(C;Y ) = H(C) − H(C|Y ), where H(C) and
H(C|Y ) are the entropy and conditional entropy, respec-
tively (Cover & Thomas, 2006).

We consider the above optimization problems in the con-
text of the energy constraint

E{tr[ΦΦT ]} ≤ E. (8)

with E being a constant. The Shannon entropy (and Shan-
non differential entropy) with natural logarithm is consid-
ered throughout (Cover & Thomas, 2006).

The mutual-information-based criterion for signal recovery
may be justified by noting that it has been shown recently
that (Prasad, 2012)

MMSE ≥ 1

2πe
exp{2[h(Y )− I(X;Y )]} (9)

where h(Y ) is the differential entropy of Y and MMSE =
E{tr[(Y − E(X|Y ))(Y − E(X|Y ))T ]} is the minimum
mean-square error, so that by maximizing mutual informa-
tion one may hope to achieve a lower reconstruction error.

The mutual information metric for classification is justi-
fied by recalling the Bayesian classification error Pe =∫
PY (y)[1−maxcPC|Y (c|y)]dy, and noting that it has been

shown in (Hellman & Raviv, 1970) that

Pe ≤
1

2
H(C|Y ) (10)

where H(C|Y ) = H(C)− I(C;Y ). Since H(C) is inde-
pendent of Φ, minimizing the upper bound to Pe is equiva-
lent to maximizing I(C;Y ).

3. Gradients of Mutual Information
3.1. Explicit Gradient Formulas

The mutual information terms in (5) and (7) generally do
not possess known analytic form for general source statis-
tics. Rather than evaluating the mutual information di-
rectly, we consider the gradient of mutual information with

respect to A. This sheds light on solving this class of opti-
mization problems, and it may be used in numerical ex-
periments (gradient-based design). It is desirable to de-
rive an analytical form of this gradient, if possible. In
this section, we present two theorems on the gradient of
mutual information for the nonlinear measurement model.
We always assume the regularity conditions, specifically,
that the order of integration and differentiation can be in-
terchanged freely, and the expectation operator E(·) may
be interchanged. This assumption is mild and almost al-
ways valid in practice (Palomar & Verdú, 2007; Wang et al.,
2014).

Theorem 1. Assuming the regularity conditions, the gra-
dient of mutual information I(X;Y ) with respect to A, for
the nonlinear measurement model in (1), can be expressed
as

∇AI(X;Y ) = (11)

Σ−1AE[[ψ(X)− E[ψ(X)|Y ]][ψ(X)− E[ψ(X)|Y ]]T ].

The above theorem generalizes the scalar result for non-
linear measurement model in (Guo et al., 2005a), and the
linear case (Guo et al., 2005b; Carson et al., 2012) now
becomes a corollary of Theorem 1 where we set ψ(X) =
X = [X1, . . . , Xn]T and A ∈ Rm×n.

Corollary 1. Assuming the regularity conditions, the gra-
dient of mutual information I(X;Y ) for the linear mea-
surement model Y = AX +W , where W ∼ N (0,Σ) can
be expressed as

∇AI(X;Y ) = (12)

Σ−1AE[[X − E[X|Y ]][X − E[X|Y ]]T ].

The gradient of mutual information between the class label
and the measurement can also be established as follow.

Theorem 2. Assuming the regularity conditions, the gradi-
ent of mutual information I(C;Y ) for the nonlinear mea-
surement model in (1) can be expressed as

∇AI(C;Y ) = Σ−1A (13)
× E{[E[ψ(X)|Y,C]− E[ψ(X)|Y ]]

× [E[ψ(X)|Y,C]− E[ψ(X)|Y ]]T }.

A corollary to the above theorem, for the linear measure-
ment special case, yields the results in (Chen et al., 2012).

The proofs of the above theorems are presented in the Sup-
plementary Material. Note that Theorems 1 and 2 are valid
for arbitrary PX or PX|C , as well as arbitrary non-linear
basis function ψ, provided that the regularity conditions
are satisfied. We also emphasize here that albeit its resem-
blance to the linear case, Theorems 1 and 2 can not be eas-
ily deduced from their linear counterparts, especially when
ψ is not injective.
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3.2. Discussion of the Theorems
The above theorems indicate that the gradient of mu-
tual information for nonlinear mappings is closely related
to the MMSE matrix of the transformed signal ψ(X)
which, for k > 1 in (2), resides in a much higher-
dimensional space than the original X . Specifically,
note the MMSE matrices E[[ψ(X)−E[ψ(X)|Y ]][ψ(X)−
E[ψ(X)|Y ]]T ] for signal recovery, and E{[E[ψ(X)|Y,C]−
E[ψ(X)|Y ]][E[ψ(X)|Y,C]−E[ψ(X)|Y ]]T } for classifica-
tion (for the classification case, this is a generalized MMSE
matrix, as in (Chen et al., 2012)). The MMSE matri-
ces characterize optimal estimation accuracy in the high-
dimensional space defined by ψ(X), and the explicit rela-
tionships for the gradients of mutual information interrelate
information-theoretic and estimation-based metrics, gener-
alizing (Guo et al., 2008).

We have m nonlinear measurements, defined by
(Φ1(X), . . . ,Φm(X)), ideally with m � n, where
X ∈ Rn. Although when m < n we manifest a compres-
sive measurement (in that the dimension of Y is smaller
than the dimension of X), the design procedure of that
measurement may be viewed as first performing a high-
dimensional mapping. Specifically, the map X → ψ(X)
translates X to an (often much) higher-dimensional space,
and this space is shared for all (Φ1(X), . . . ,Φm(X)).
The aforementioned MMSE matrices characterize optimal
estimation in that higher-dimensional space, characterized
by the mapping of the statistics of X to the statistics of
ψ(X). While traditional compressive sensing is character-
ized by a linear mapping directly from X to Y , we here
first manifest a nonlinear mapping to a high-dimensional
space, via ψ(X). Once in that higher dimensional space,
the subsequent measurement is like in traditional linear
compressive sensing (Candès et al., 2006).

Because once the mapping ψ(X) is performed everything
proceeds like in traditional compressive sensing, Theorem
1 looks like the results in (Carson et al., 2012), and The-
orem 2 looks like the results in (Chen et al., 2012); the
only difference appearing to be that here ψ(X) replaces
X in the previous work. Similar connections appear with
respect to the results in (Guo et al., 2008). However, we
emphasize that the proof of the theorems is not a direct ap-
plication of these previous results. To see this, note that
X → ψ(X)→ Y forms a Markov chain, and via the Data
Processing Inequality (Cover & Thomas, 2006), we have
that I(X;Y ) ≤ I(ψ(X), Y ). The equality may not gen-
erally hold when ψ is not injective, thereby invalidating an
easy argument following directly via the gradient of linear
model∇AI(ψ(X);Y ).

Instead, by assuming a general ψ, our proofs are done by
computing directly the gradient of the mutual information
associated with the measurement model in (1), (2) and (3),

with details presented in the Supplementary Material. Be-
yond the fact that this theorem represents a generalization
of previous results associated with intersections between
information theory and estimation theory to nonlinear set-
tings, thereby filling an important gap in the literature, the
significance of the theorem is also twofold. First, it de-
scribes how changes in the parameters of the nonlinear
expansions affect the mutual information (associated with
recovery or classification problems) via generalisations of
the MMSE matrix (for recovery) or the equivalent MMSE
matrix (for classification) in the higher-dimensional space
induced by the expansions: this then provides the means
to articulate in an information-theoretic manner about the
value of kernel methods, as discussed later. Second, the
theorem also provides a mechanism to perform nonlinear
measurement designs in compressive settings: in fact, the
practical value of the theorem is justified by state-of-the-art
results in various recovery and classification problems, as
shown in Section 5.
3.3. Gradient-Based Numerical Design

A numerical solution to the optimization problems in (5)
and (7) can be realized via a gradient-descent method. The
MMSE matrices involved in Theorems 1 and 2 can be read-
ily calculated by Monte Carlo integration, as in (Carson
et al., 2012; Chen et al., 2012); we elaborate on this calcula-
tion when presenting experimental results. We summarize
the algorithm as follows:

1. Select suitable basis vector ψ(X) and initialize A.

2. Use Monte Carlo integration to calculate the MMSE
matrices involved in Theorems 1 and 2. Update the A
matrix as Anew = proj(Aold + δ∇AI(·, Y ), where δ
is the step size, I(·, Y ) is the mutual information of
interest and proj(·) projects the matrix to the feasible
set defined by the energy constraint in (8), i.e., re-
normalize A to satisfy the energy constraint.

3. Repeat previous step until convergence.

In general the mutual information is not a concave function
of A, and therefore we cannot guarantee a global-optimal
solution. In all experiments the solution converged to a
useful/effective solution from a random start.

4. Relationship to Previous Work
4.1. Connection to Kernel Methods

We have noted in Section 3.2 that the proposed procedure
may be viewed as the sequence X → ψ(X) → Aψ(X),
where we first map X to a higher-dimensional space via
ψ(X), and then perform a linear measurement via A to the
low-dimensional space in which the m-dimensional mea-
surement is performed. Methods like the SVM are moti-
vated by first implementing a similar mapping ψ(X), but
the mapping is not applied explicitly, as inner products in
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the high-dimensional space are replaced by a Mercer ker-
nel.

However, some kernel methods, such as kernel PCA
(Schölkopf et al., 1998), can be regarded as a special case
of the proposed approach. To see this, let φ(x) : Rn → Rr
with r � n be the implicit feature mapping used in the
kernel methods. By the dense property of the polynomial
functions (Folland, 1999), we have that φ(x) ≈ Aφψ(x),
where Aφ is the associated coefficient matrix, ψ(x) is the
polynomial basis vector defined in the previous section, and
the accuracy of this approximation is improved with the in-
crease of the polynomial order. Afterwards, a linear projec-
tion matrix P is applied to obtain the compressed measure-
ment Φ(x) = PAφψ(x). It is straightforward to see that by
equating A = PAφ, the kernel methods fall into a special
case of our approach. Compared to the kernel methods, in
which one has to implicitly calculate the coefficient matrix
Aφ via a Mercer’s kernel function and constitute the pro-
jection matrix P indirectly via the kernel trick, by relaxing
PAφ to one matrixA, it only requires one to specify a basis
ψ in which a linear separation of the data is possible. Fur-
thermore, such a requirement is almost always guaranteed
with a high enough expansion order (high enough order of
the Taylor expansion under the polynomial basis).

4.2. Connection to Compressive Sensing
As discussed in Section 3.2, the proposed procedure may
be viewed as a mapping X → ψ(X), followed by lin-
ear measurements to manifest ψ(X) → Y , with the linear
measurements (projections) defined by the rows of A. This
is a generalization of compressive sensing (CS) (Candès &
Wakin, 2008; Candès et al., 2006), in that in CS-like linear
measurements are also performed. However, here the linear
measurements are performed after manifesting a mapping
to a higher-dimensional space, via ψ(X). Another distinc-
tion with CS is that in the original theory the projection ma-
trix A was constituted at random, however here we design
A. It was demonstrated in (Carson et al., 2012; Chen et al.,
2012) that such designed CS measurements often yield bet-
ter results than randomly constituted A, and he we extend
this concept to linear measurements after a mapping to a
higher-dimensional space.

An important new theoretical result was developed in (Blu-
mensath, 2013), in which the same nonlinear measurement
model Y = Φ(X) + W is considered, where Φ(X) is a
set of m nonlinear functions, like we have considered. The
author linearizes Φ(X) by taking the first order expansion
(like our first derivative), and this expansion yields a first-
order measurement model AX , where A is a function of
X . Recovery guarantees are derived assuming X is sparse,
and under the condition that A satisfies restricted isome-
try property (RIP) conditions. Here we design the Φ(X)
for all X characterized by distribution PX (we do not lo-

cally linearize), and we consider generalPX (do not require
sparsity). Further, we consider this design for the classifica-
tion problem as well, not addressed in (Blumensath, 2013).
While we do not have performance guarantees, (9) and (10)
provide theoretical assurances on the quality of the subse-
quent results, validated in our experiments.

5. Experiments
We evaluate the proposed nonlinear measurement de-
sign for both signal recovery and classification appli-
cations. The gradient results in Theorems 1 and 2
are valid for arbitrary mixture distribution of X and
can be readily implemented via Monte Carlo integra-
tion, provided the posterior Pψ(X)|Y can be easily sam-
pled (we use a Gaussian mixture model (GMM) sig-
nal model to achieve that goal). We assume PX(x) =∑T
i=1 πiPX|C=i for input data X and employ a GMM

for Pψ(X)|C=i(x) =
∑Ni

j=1 π
(j)
i N (x;µ

(j)
i ,Σ

(j)
i ). Con-

sequently, the distribution of ψ(X) for each discrete
class label C = i is a GMM. The distribution Pψ(X)

is also a GMM with the class label C summed out:
Pψ(X)(x) =

∑T
i=1

∑Ni

j=1 πiπ
(j)
i N (x;µ

(j)
i ,Σ

(j)
i ), where

π
(j)
i , j = 1, . . . , Ni are the GMM coefficients within class
i. µ(j)

i and Σ
(j)
i , j = 1, . . . , Ni are the means and variances

of respective Ni Gaussian components. The GMMs are
learned as discussed in (Chen et al., 2010), based on train-
ing data {ψ(Xi)}, obtained simply by apply the function
ψ(X) on the input training data {Xi}. The nonparametric
method in (Chen et al., 2010) used to learn the GMMs in-
fers the number of needed mixture components, via use of
the Dirichlet process. As is well known, the GMM is able
to capture the true underlying distribution of ψ(X) with
increased number of components Ni, and therefore the as-
sumption of a GMM source is not limiting in practice.

In addition to being easily sampled, the GMM representa-
tion has the advantage of an analytic posterior Pψ(X)|Y ,
which is also a GMM, as detailed in (Chen et al.,
2010; 2012). In particular, we have that Pψ(X)|Y =∑T
i=1 π̃iPψ(X)|Y,C=i, with analytic expressions for {π̃i}

and Pψ(X)|Y,C=i. Within the Taylor/polynomial expansion
ψ(X), the first-order terms in ψ(X) are X itself. There-
fore, when performing estimation of X based on observed
Y , we first (analytically) compute Pψ(X)|Y , and we then
marginalize out all components other than those associ-
ated with X itself. The MMSE estimated recovered sig-
nal is E[X|Y ], computed efficiently in closed form. Since
the posterior PX|Y is also a GMM, it naturally induces a
Bayesian classifier maxc PC=c|Y , where PC=c|Y = π̃c.

To obtain faster convergence in the gradient descent
method using Theorems 1 and 2, we normalize the basis
vector ψ(X) by apply a constant vector γ ∈ Rr such that
the E[diag

(
(γ ◦ ψ(X)(γ ◦ ψ(X))T

)
] = 1, where ◦ de-
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notes the Hadamard product (entry-wise product), 1 is a
r × 1 all-one vector and r is the dimension of ψ(X), as
previously defined. This normalization balances the con-
tributing nonlinear terms of different degrees, and avoids
the appearance of any dominating terms. The normalizing
vector γ can be empirically obtained via the sample covari-
ance of training data {ψ(X)}. Moreover, to avoid extra
computational cost brought by the very high dimensional
vector ψ(X), for large k, we reduce the dimension of ψ(X)
by only keeping n entries of i-th order, for each i varying
from 1 to k (these entries are selected at random, with the
results insensitive to this selection). This yields a reduced
ψ(X) dimension of nk, simplifying computations. There-
fore the dimensionality of ψ(X) grows only linearly with n
and k. While simplifying computations, and reducing the
dimension of A that must be learned, we still map X to
a higher-dimensional space via ψ(X), as the first terms in
ψ(X) are the components of X iteself.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Number of Measurements

M
S

E
 R

at
io

 

 

Lin Random
Lin Optimized
NL1−0  P:12
NL0−1  P:12
NL1−1  P:12
NL1−0  P:13
NL1−0  P:123
NL1−0  P:1234

Figure 1. MSE ratio for the nonlinear compressive sensing of
GMM data. NLα-β denotes the existence of pure terms Xj

i for
α = 1 and cross terms Xk

i . . . X
l
j for β = 1 in the polynomial

expansion ψ(X). P = [p1p2, . . . , pk] represents the contributing
powers.

5.1. Signal Recovery
Using simulated GMM data, in Figure 1 the MSE perfor-
mance of the proposed method, for various polynomial ex-
pansions of ψ(X), is compared to linear CS. We consider
random and optimized measurement matrices, at the same
number of measurements and noise levels. The data is sam-
pled from a GMM distribution

∑T
t=1 πtN (µt,Σt), where

the number of GMM components is arbitrarily set to T = 4
for demonstration, and the dimension of the input data is
n = 10. The mean µt is a n × 1 vector whose elements
are drawn from a uniform distribution on interval [−1, 1].
The variance matrix Σt is a matrix drawn from a Wishart
distribution formed as Σt = GtG

T
t , where the entities ofG

are i.i.d. unit-variance zero-mean Gaussian. Measurement
noise with variance matrix σ2Im×m has been added where
Im×m is m × m identity matrix, and the SNR defined as
E[Φ(X)T Φ(X)]

mσ2 is set to 0 db. We here consider Ni = 100
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Figure 2. Performance of Bayesian estimation using nonlin-
ear compressed measurements of Image data. The nonlin-
ear transformed data is modeled as GMM with 100 com-
ponents. A second order polynomial expansion ψ(X) =
[X1, X2, . . . X

2
1 , ...XiXj , . . . X

2
n]

T is used. The rows are corre-
sponding to the i) linear projection with random measurement ma-
trix, ii) optimized linear projection using MIM-GD method (Chen
et al., 2012) and iii) the proposed nonlinear optimized measure-
ment, respectively.

mixture components for each class to estimate Pψ(X)(x).
The recovered signal is manifested via the previously de-
fined MMSE estimator.

In this figure, the notation “Lin Random”, “Lin Opti-
mized”, and “NL” correspond to, respectively, i) linear CS
with random measurement matrix with i.i.d Gaussian ele-
ments, ii) linear CS with optimized measurement matrix
(Carson et al., 2012), and iii) nonlinear CS with optimized
(proposed method) measurement matrix. The parameter
P = [p1p2, . . . , pk] in Figure 1 represents the existence
of various degrees in the polynomial expansion ψ(X). The
terms α and β in (NL-α-β) refer to the existence of pure
(Xj

i ) and cross terms Xk
i . . . X

l
j , respectively. The pro-

jection matrix A for the nonlinear CS is optimized based
on Theorem 1, using gradient descent to maximize the mu-
tual information between the input and observation vectors.
The gradient descent step size and the number of iterations
are set to 0.01 and 2000, respectively. The same energy
constraint (E = 1, arbitrarily) has been applied to all meth-
ods considered here.

It is evident from Figure 1 that by adding an intermediate
nonlinear mapping stage, the estimation accuracy is signif-
icantly improved. The MSE ratio E[‖X̂−X‖2]

E[‖X‖2] is reduced by
a factor of 5 to 10. Higher-order nonlinear mapping pro-
vides a better separability of the GMM components, even
through its compressed measurements that leads to a better
point estimation result. It is noticed that the more higher
order nonlinear terms are used, the higher estimation ac-
curacy is obtained. However, this effect saturates and the
second or third order polynomials are appropriate choices
to avoid unnecessary computational costs, especially when
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the dimensionality of the input data is fairly large. The re-
sults suggest that using only second order expansion with
double dimensionality (r = 2n) provides a significant sig-
nal recovery gain.

Similar result are obtained for the image data recovery as
depicted in Figure 2. In this case, the image data is mod-
eled with learned GMM distribution. We use a training set
consisting of 500 jpeg images from the Berkeley Segmen-
tation Datasets (Carson et al., 2012); this training data is
completely distinct from the test data. Each image is split
into 4× 4 patches. Then, we randomly choose 200 patches
from each image and vectorize them to yield 100, 000 vec-
tors of dimension 16. A GMM model with 20 and 100
components are trained for X and ψ(X), respectively. It
has been observed that introducing more GMM compo-
nents for X does not provide a better signal recovery in
linear CS case. The results in Figure 2 demonstrate that
using nonlinear CS in real applications with high compres-
sion requirements provides a promising performance im-
provement, particularly at low SNR (many similar results
were obtained, omitted for brevity).
5.2. Classification
In analogy to the estimation case considered above, classifi-
cation accuracy can also be improved by incorporating non-
linearity to the input vector based on the same reasoning
that a higher dimensional nonlinear space provides more
separability, especially when the data classes are not lin-
early separable or severely corrupted by noise. In other
words, the noisy version of ψ(X) with additional nonlinear
terms represents richer information about the latent class
variable C than the noisy X does. The measurement de-
sign employs Theorem 2, maximizing the mutual informa-
tion between the class labels and the measurements. The
aforementioned Bayesian classifier is utilized on the opti-
mized nonlinear compressed version of data, and is com-
pared to the Bayesian classifier applied to the linearly com-
pressed data (the same type classifier is used in all experi-
ments). In addition to the random design of linear measure-
ments, we compare our method to various linear projection
design methods, such as the Fisher’s Linear discriminant
analysis (LDA), where the ratio of the inter-class scatter-
ing to the within class scattering of the compressed data is
maximized (Fisher, 1936). We also compare the results to
linear CS with projections optimized using state-of-the-art
information theoretic methods, including information dis-
criminant analysis (IDA) (Nenadic, 2007), Quadratic Renyi
(Hild et al., 2006), and the mutual information maximiza-
tion using gradient descent method (MIM-GD)(Chen et al.,
2012). These are comparisons to the very best designed
linear measurements in the literature.

A GMM representation with Ni components is trained for
each data class i ∈ {1, 2, . . . , T}, resulting a mixture
of GMM for ψ(X) (the value of Ni is data- and class-
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Figure 3. Bayes classification accuracy of GMM data: Nonlin-
ear CS is compared to the linear CS with random and optimized
measurement matrices using different methods. Dataset is 6-class
Satellite data with training size 4435, testing size 2000 and pa-
rameters (n = 36, Ni = 10,m = 4).

dependent, and Ni is learned, as discussed above). All
the competing methods we considered here are derived for
the same mixture models, yielding a direct and meaningful
comparison.

We consider three datasets including Satellite data, Letter
and UPSP digit data, following (Chen et al., 2012), wherein
an explanation of the datasets is provided. The results for
the classification success rate, averaged over the whole test-
ing set, are presented in Table 1, and Figures 3 and 4.

The results for the linear CS in Table 1 are consistent
with the well-know presumption that the information theo-
retic optimization methods including IDA (Nenadic, 2007),
Renyi (Carson et al., 2012) and MIM-GD (Chen et al.,
2012) outperforms the correlation-based LDA method,
since LDA assumes that the first and second order mo-
ments capture the whole data dependence. The results also
demonstrate a considerable improvement for the proposed
optimized nonlinear CS, with respect to the linear mea-
surements. The gain is markedly superior to the best re-
ported information-theoretic linear projection design (Chen
et al., 2012). This, as motivated throughout this paper, is
based on the philosophy of providing higher separability
by mapping to a higher order nonlinear subspace, as is indi-
rectly used in SVM kernel methods (Bishop & Nasrabadi,
2006). Another intuitive justification is that, by increas-
ing the input vector dimensionality, the measurement noise
is corresponding to more input terms, and hence the ag-
gregated impact of the noise on each measurement sam-
ple Yi is reduced due to the structured nature of the sig-
nal and the random nature of the noise. The closest re-
sult to the proposed nonlinear case is MIM-GD, where a
similar mutual information optimization is applied to lin-
ear CS. Improved MIM-GD results are manifested because
the signal is not assumed to be Gaussian (as in IDA (Ne-
nadic, 2007)) and via a more-accurate representation of the
Shannon entropy than the empirically obtained approxima-



Nonlinear Information-Theoretic Compressive Measurement Design
Table 1. Bayes classification accuracy of GMM data: Nonlinear CS is compared to the linear CS with random and optimized mea-
surement matrices using different methods. Dataset is 26-class Letter data with training size 16000, test size 4000 and parameters
(p = 16, Ni = 10,m = 1, 2, . . . , 8). The noise power is 0 db per sample.

BAYESIAN CLASSIFICATION SVM KERNEL METHOD

M RANDOM LDA IDA RENYI MIM-GD NONLINEAR LINEAR POLY RBF

1 0.0995 0.1293 0.1435 0.1370 0.1792 0.2003 0.1353 0.1275 0.1313
2 0.1383 0.2752 0.2868 0.2107 0.3043 0.4150 0.2602 0.2652 0.2592
3 0.2198 0.3523 0.3675 0.3033 0.5052 0.6205 0.3200 0.3322 0.3140
4 0.3073 0.4477 0.4577 0.3342 0.6567 0.7405 0.3957 0.3812 0.3990
5 0.3655 0.4743 0.5360 0.3585 0.7110 0.8135 0.4235 0.4040 0.4200
6 0.4193 0.5323 0.5972 0.4407 0.7710 0.8425 0.4412 0.4340 0.4680
7 0.4655 0.5623 0.6485 0.4815 0.7965 0.8708 0.4482 0.4540 0.5058
8 0.5022 0.5962 0.6805 0.5410 0.8173 0.8945 0.4653 0.4798 0.5350

tion of Renyi entropy (Hild et al., 2006). Nevertheless, in-
cluding the proposed nonlinearity within the measurement
yields further performance improvements. It is notable that
the projection design for LDA is performed in one itera-
tion, hence much faster than the iterative methods includ-
ing IDA, Renyi, MIM-GD and the proposed nonlinear CS.
Each iteration in the iterative methods involves matrix in-
version, therefore at most proportional to the cube of the
dimensionality of input data, n3. This means an increase
by a factor of 8 for our choice of second order polynomial
expansion, (k = 2, r = kn) with respect to the linear case.
Note that the measurement design process (linear or non-
linear) is offline and performed once. Signal recovery or
classification with the nonlinear measurement is fast, only
very slightly more expensive than the fast inversion of the
linear measurement.

−30 −25 −20 −15 −10 −5 0 5 10 15 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR db

C
la

ss
ifi

ca
tio

n 
S

uc
ce

ss
 R

at
e

 

 

Linear: Random
Linear: LDA
Linear: IDA
Linear: Renyi
Linear: MIM−GD
Non Linear: Optimized

Figure 4. Bayes classification accuracy of GMM data: Nonlinear
CS is compared to the linear CS with random and optimized mea-
surement matrices using different methods. Dataset is 10-class
Digit data with training size 7291, test size 2007 and parameters
(n = 256, Ni = 1,m = 8).

For completeness of comparisons, we also performed ker-
nel SVM classification on the compressed data, similar
to (Calderbank & Jafarpour, 2012). We first project the
data to the lower dimensional space using random or PCA-
based linear projections. We then train an SVM model over
the compressed training data and performed classification
over the noisy compressed, constituting a fair comparison
to our other experiments (equal number of measurements

and equal noise level per measurement). We considered
an SVM with linear, polynomial of order 3 and RBF ker-
nels, with optimized parameters (Shawe-Taylor & Cristian-
ini, 2004). The results indicate a significant gain for the
proposed method over the kernel SVM. Although both ker-
nel SVM and the proposed methods benefit from a similar
philosophy of yielding higher separability with nonlinear
mapping, the proposed direct mapping of the input to the
nonlinear feature space facilitates the optimal measurement
design by directly maximizing the mutual information be-
tween the class labels and the compressed measurements.

Similar results are obtained for the Satellite and Digit
datasets, as shown in Figures 3 and 4. The results in Figure
4 emphasizes the importance of projection design over ran-
dom projection, when m � n. These results confirm that
the information-theoretic optimized nonlinear sensing out-
performs the best reported linear projection design, with a
significant margin at low SNR. At high SNR, however, the
results are essentially equivalent to the MIM-GD, which is
the linear counterpart of the proposed method.
6. Conclusions
We have developed an information-theory-based frame-
work for optimizing nonlinear compressive measurements.
Classification and signal-recovery tasks have been ad-
dressed, based on new theory for the gradient of mutual
information. Specifically, we have derived closed-form
gradient-of-mutual-information results, and the optimiza-
tion has leveraged gradient descent based on this theory.
The method is applicable to general source signals, and in
the experiments the GMM has been used, with closed-form
estimations. Encouraging results for the nonlinear mea-
surement model have been demonstrated on real datasets. It
has been demonstrated that the proposed method achieves
generally better performance than the best linear measure-
ments and than the nonlinear SVM. The biggest gains over
linear methods occur at low SNR, and at high SNR the op-
timized linear and nonlinear results are similar.
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