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Abstract—Classical compressive sensing typically assumes a
single measurement, and theoretical analysis often relies on corre-
sponding concentration-of-measure results. There are many real-
world applications involving multiple compressive measurements,
from which the underlying signals may be estimated. In this
paper, we establish a new concentration-of-measure inequality for
a block-diagonal structured random compressive sensing matrix
with Rademacher-ensembles. We discuss applications of this
newly-derived inequality to two appealing compressive multiple-
measurement models: for Gaussian and Poisson systems. In
particular, Johnson-Lindenstrauss-type results and a compressed-
domain classification result are derived for a Gaussian multiple-
measurement model. We also propose, as another contribution,
theoretical performance guarantees for signal recovery for multi-
measurement Poisson systems, via the inequality.

I. INTRODUCTION

Recently there has been considerable interest in compressive
sensing (CS), with the goal of compressively measuring a
high-dimensional signal with minimal loss of information [1],
[2], [3], [4]. Linear compressive measurements have attracted
particular attention, given their simplicity, with compressive
measurement realized by projecting the high-dimensional sig-
nal f ∈ Rn using a sensing matrix Φ ∈ Rm×n with m� n.

In particular, it has been revealed that certain classes
of randomly constituted sensing matrices facilitate perfect
reconstruction of the original high-dimensional signal with
overwhelming probability, via tractable l1 or iterative methods
[5], [6], [7]. The theoretical analysis often necessitates the
notion that the norm of the signal f is approximately preserved
under Φ with high probability, and such a notion is formalized
via the concentration-of-measure phenomenon [8]. It has been
found that required concentration-of-measure results can be
manifested by posing proper sub-Gaussian ensembles on Φ
[9].

In many practical applications, the input data may be natu-
rally presented in discrete blocks, with each block sequentially
measured by the system. Alternatively, it may be impractical
to consider all data as one input signal f , because of the
resources and computational constraints of the acquisition
system. Typical examples include distributed sensing systems
in which each sensing entity only has access to a subset of
the input data, and sensing systems for streaming signals, such
as video, that require sequential sensing operations on each

frame. For all these situations, multiple measurements {yk}
are sequentially collected for the input signal sequence {fk}
via the identical sensing matrix Φ.

Almost all previous work is directed towards the case
of a single compressive measurement, and corresponding
concentration-of-measure results for the single-measurement
model are formulated [7], [9]. To the best of our knowl-
edge, there are very few papers on deriving concentration-of-
measure results for a multiple-measurement model, except for
[10], [11] in which a concentration-of-measure inequality for
the multiple-measurement model with identical sensing matrix
is established via Gaussian-ensembles on Φ.

In this paper we derive a new concentration-of-measure in-
equality for a block-diagonal sensing matrix with Rademacher-
ensembles, which aims to establish theoretical properties for
multiple-measurement models akin to single measurement
counterparts.

Our second goal is to adapt the newly-derived
concentration-of-measure inequality to the Poisson multiple-
measurement model, in view of numerous applications of
the Poisson sensing model in X-ray [12], chemical imaging
[13], [14] and document classification [14], [15]. In contrast
to results in [10], [11] where Gaussian emsembles are
manifested, the non-negativity constraint on the Poisson
sensing matrix can be readily satisfied for our proposed
Rademacher-ensembled Φ, by adding a constant offset.
We then propose maximum-likelihood estimators for signal
recovery in the Poisson multiple-measurement model, and
theoretical performance guarantees are derived based on the
new concentration-of-measure inequality.

The remainder of the paper is organized as follows. Section
II introduces two multiple-measurement models of interest,
i.e., Gaussian and Poisson models. Section III describes a
sensing matrix constructed using Rademacher-ensembles, and
derives a new concentration of measure inequality. Section IV
discusses several applications of the concentration-of-measure
inequality to stable embedding and compressive classifica-
tion for Gaussian multiple-measurement systems. Section V
presents an application to the signal-recovery problem for
multiple Poisson measurements and establishes theoretical
guarantees for the proposed estimators. Section VI concludes
the paper.
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II. MULTIPLE-MEASUREMENT MODELS

Let fk ∈ Rn denote the k-th input signal of the sensing
system. For a Gaussian multiple-measurement model, the k-th
measurement yk ∈ Rm is obtained via the following random
transformation:

yk = Φfk + wk, (1)

where Φ ∈ Rm×n is the sensing matrix with m � n
and wk ∼ N (0,Σ) is Gaussian noise. Assuming K such
measurements, (1) can be equivalently rewritten as

y = Af + w, (2)

where

y
def
=
[
y>1 , . . . ,y

>
K

]>
, (3)

f
def
=
[
f>1 , . . . , f

>
K

]>
, (4)

w
def
=
[
w>1 , . . . ,w

>
K

]>
. (5)

A ∈ RKm×Kn is constituted via block-diagonalization A
def
=

IK ⊗ Φ, IK denotes the K × K identity matrix, and ⊗
represents the Kronecker (tensor) product.

The Poisson model serves as another important example,
and its k-th measurement yk ∈ Zm+ is a Poisson-distributed
count vector:

yk ∼ Pois(Φfk)
def
=

m∏
i=1

Pois((Φfk)i), ∀k = 1, . . . ,K, (6)

where fk � 0, for all k = 1, . . . ,K and � denotes the
entry-wise inequality. Φ ∈ Rm×n+ is the sensing matrix, with
m � n, and (· )i denotes the i-th entry of the argument
vector. The first Pois(·) in (6) has a vector argument for the
rate, and corresponds to a Poisson distribution implemented
independently on each component of the rate vector; the
second Pois(·) in (6) denotes the common scalar Poisson
distribution with the argument rate. Akin to its Gaussian
counterpart, the Poisson multiple-measurement model may be
expressed concisely as

y ∼ Pois(Af). (7)

Despite the resemblance of (2) and (7) to their single-
measurement counterparts, the major difference is that A
is required to be of block-diagonal structure for multiple-
measurement models.

III. CONCENTRATION-OF-MEASURE INEQUALITY

A concentration-of-measure is a phenomenon describing the
tendency of certain functions of a high-dimensional random
process to concentrate sharply around their means [8]. It
is common to randomly constitute the sensing matrix, from
which a concentration-of-measure inequality can be derived
[9]. We propose to constitute the matrix Φ via Rademacher-
ensembles as follows. First generate Z ∈ {1,−1}m×n, with
each entry drawn i.i.d. from the Rademacher distribution (i.e.,
random variables take values 1 or −1 with equal probability).
Let Φ

def
= Z√

m
and the block-diagonal sensing matrix is

A = IK⊗Φ. We derive a concentration-of-measure inequality
for the block-diagonal Rademacher-distributed matrix A.

Theorem 1. Let A be generated as described above and let
∆ = {f |f ∈ RKn} be a countable or finite set. Then the matrix
A satisfies the following concentration-of-measure inequality

P(
∣∣‖Af‖22 − ‖f‖22

∣∣ ≥ ε‖f‖22) ≤ e · exp

(
−c1ε

2‖f‖42
mn2

)
∀f ∈ ∆, ε ∈ (0, 1), (8)

where c1 > 0 is a constant and e denotes the base of the
natural logarithm.

In contrast to many previous concentration-of-measure re-
sults for matrices populated with i.i.d. sub-Gaussian entries
[16], the decay rate indicated by Theorem 1 depends on the
signal being measured. Our concentration-of-measure result
provides a new strategy, by constituting Φ via the Rademacher
distribution. Compared to the result in [11], [10], where the
best possible decay rate for the exponential is of Θ(K), our
results may provide a better result, as Θ(K2), at a cost of
a countability constraint on the signal class. The big-theta Θ
notation is used here to denote two-sided boundedness for
functions of real numbers. For example, f(K) ∼ Θ(g(K))
means c1g(K) ≤ f(K) ≤ c2g(K) with constants c1, c2 > 0
for all K large enough. More importantly, as we elaborate
on later, such a Rademacher configuration facilitates an easy
construction of a non-negative sensing matrix necessary for
Poisson sensing, by simply adding a constant offset. The
Gaussian configuration proposed in [11], [10] cannot be easily
adapted to guarantee such a non-negative constraint. Neverthe-
less, in addition to its own theoretical value, our concentration-
of-measure results also shed light on CS for multiple Gaussian
measurements; in the next section, we present some applica-
tions of the concentration-of-measure result for that case.

IV. GAUSSIAN MULTIPLE-MEASUREMENT MODEL

The concentration-of-measure inequality is a powerful char-
acterization for the behavior of a random operator, which
possesses a number of implications in various areas [16]. We
formulate a modified version of the Johnson-Lindenstrauss
(JL) Lemma [17] for block-diagonal matrices. First, recall the
definition of the stable embedding [18]

Definition 1. For U, V ⊂ Rn, a map Φ : Rn → Rm is called
an ε-stable embedding of (U, V ) if

(1− ε)‖x− y‖22 ≤ ‖Φ(x− y)‖22 ≤ (1 + ε)‖x− y‖22,
∀x ∈ U, y ∈ V. (9)

In other words, a map is a stable embedding of (U, V ) if
it almost preserves all pairwise distances between U and V .
The classical JL Lemma [17] assures the existence of such an
ε-stable embedding of (U,U) if m ∼ Θ( log |U |

ε2 ).
Via Theorem 1, a modified version of the JL Lemma can

be stated as follows.
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Theorem 2. Let U, V ⊂ RKn be two finite sets and A ∈
RKm×Kn be generated as previously described. For 0 < ρ <
1 being fixed, A is an ε-stable embedding of (U, V ) with

ε =

√√√√mn2(log ρ+ 1 + log |U |+ log |V |)
c1 minx∈U,y∈V

x 6=y
‖x− y‖42

, (10)

which holds with probability at least 1− ρ, where c1 > 0 is a
constant.

In the above theorem, we note that the performance of the
stable-embedding depends on the pairwise distance between
two classes U and V and the total number of measurement
K is not directly revealed there. Theorem 2 is of particular
interest when the minimal energy of signal difference between
two classes U and V scales with the number of measurements
K, i.e., minx∈U,y∈V

x6=y
‖x − y‖22 ∼ Θ(K). Whenever such an

assumption is valid, it is straightforward to see that embedding
performance will keep improving with increasing K.

This assumption can be satisfied for many common classes
of signals, akin to the notion of “favorable signal class”
proposed in [10]. Specifically, for video signals and frequency-
sparse signals satisfying additional assumptions, it has been
justified empirically and theoretically in [10] that the energy
of the signal difference ‖xi − yi‖22, i = 1, . . . ,K tends to be
uniformly distributed. In other words, we have ‖x − y‖22 =∑K
i=1 ‖xi−yi‖22 ∼ Θ(K). We refer readers to [10] for details

and more examples. The following corollary summarizes the
previous discussion, which explicitly reveals the effect of K
on the embedding performance.

Corollary 1. Let U, V ⊂ RKn be two finite sets and A ∈
RKm×Kn be generated as previously described. Assume that
minx∈U,y∈V

x 6=y
‖x− y‖22 ∼ Θ(K). For fixed ρ with 0 < ρ < 1,

A is an ε-stable embedding of (U, V ) with

ε =

√
mn2(log ρ+ 1 + log |U |+ log |V |)

c2K2
, (11)

which holds with probability at least 1− ρ, where c2 > 0 is a
constant.

Indeed, the classical JL Lemma can be derived from Corol-
lary 1 by considering a finite set U satisfying the assumptions.
Setting m = 1, Theorem 1 essentially claims the existence
of an ε-stable embedding for (U,U) which maps U to RK ,
provided K ∼ Θ( log |U |

ε2 ). Note that this result coincides with
the classical JL Lemma and can be regarded as a JL Lemma
result for sequential embedding of a sequence of signals.
Furthermore, rather than being a pure existence result, as in the
classical JL Lemma, this result provides a randomized method
to realize such a stable-embedding.

With the derived stable-embedding results, it is possible to
apply them to various applications for signal processing in
the compressed domain, where the stable-embedding result
plays a pivotal role [18]. We now present such an application

to compressed domain classification for Gaussian multiple-
measurement model, which extends the results in [18] for
Gaussian single measurement model.

Often classification of a signal among multiple hypotheses
is demanded, where one such signal f ∈ RKn is provided
to the acquisition system in the form of multiple inputs
{fi}Ki=1 with f =

[
f>1 , . . . , f

>
K

]>
. Assume L classes of sig-

nals f (1), . . . , f (L) and the compressed multiple measurements
y = [yT1 , . . . ,y

T
K ]T ∈ RKm is obtained via a Gaussian mea-

surement model yi = Φfi + wi with i.i.d. wi ∼ N (0, σ2Im).
Let A

def
= IK ⊗ Φ. Given the multiple-measurement y, we

wish to classify y via the following L hypotheses:

Hi : y = Af (i) + w, i = 1, . . . , L, (12)

where w = [wT
1 , . . . ,w

T
K ]T . The minimal classification error

is achieved by minimizing the sufficient statistic ‖y−Af (i)‖22
when each hypothesis are equally likely [19]. Like results
in [18], the following theorem for the performance of the
classifier i = arg mini ‖y − Af (i)‖22 can be established via
our previous stable-embedding results.

Theorem 3. Let A be generated as previously described and
fix 0 < ρ < 1. Assume that input signal f is chosen from L
classes of signals f (1), . . . , f (L) and the multiple-measurement
is obtained as y = Af (i)+w with w ∼ N (0, σ2IKm), for i =
1, . . . ,K. We further assume that each class is equally likely.
Then the classifier i = arg mini ‖y −Af (i)‖22 will produce a
correct classification with probability at least

1− L− 1

2
exp

{
−δ

2(1− ε)
8σ2

}
− 2ρ, (13)

where δ = mini 6=j ‖f (i) − f (j)‖2 and ε =√
mn2(log ρ+1+2 logL)

c1δ4
and c1 > 0 is a constant.

V. POISSON MULTIPLE-MEASUREMENT MODEL

Provided with K measurements {yk}Kk=1 via the Poisson
multiple-measurement model in (6), we consider the goal of
recovering the underlying signals {fk}Kk=1.

When developing the theory, we make the following as-
sumptions:
A1) The intensity of each signal fk is known and fixed, i.e.,

‖fk‖1 = S for k = 1, . . . ,K; such an assumption is
practical for many real applications and a similar one
was made in [20], and is necessary to make {fk} and Φ
identifiable.

A2) Af � cS1Km, where constant c > 0 and � denotes the
entry-wise inequality. 1Km denotes a vector of dimension
Km with all 1 entries. This is used to exclude the singular
case, where some Poisson rates asymptotically approach
zero.

We propose to estimate f via the following maximum-
likelihood estimator (MLE):

f̂ = arg min
f∈Γ

{− log Pois[y; Af ] + 2 pen(f)} , (14)

where Γ is a collection of all candidate estimators.
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In practice, the signal energy level S may not be known
precisely. In order to increase the flexibility of regularizers in
(14), one may relax the MLE in (14) to the following form:

f̂ = arg min
f∈Γ

{− log Pois[y; Af ] + τ1 pen(f)} , (15)

where τ1 > 0 is a preset constant. We refer to the above
estimator as the relaxed-MLE.

We assume that Γ is a countable or finite set, and all the
candidate estimators in Γ satisfy the constraints

Γ ⊂
{

f

∣∣∣∣ f � 0, ‖fk‖1 = S,∀k = 1, . . . ,K;
Af � cS1Km.

}
. (16)

The penalty term pen(f) is required to satisfy the Kraft in-
equality

∑
f∈Γ e

− pen(f) ≤ 1. The pen(·) acts as a logarithmic
prior on the signal and can be designated as many popular
penalty functions, when a proper scaling is applied in order
to satisfy the Kraft inequality. Typical choices for the pen(·)
include the l1 norm, of interest for sparse signals [3], and the
total-variation norm for smooth signals [21]. In fact, this Kraft-
compliant penalty is related to the prefix codes for estimators,
and more concrete examples of this penalty functions are
presented in [22]. Since the performance bounds are built
upon Theorem 1, the countability assumption reflected in Γ
is therein inherited.

We note that the above MLE and relaxed-MLE can be
solved efficiently via an alternating proximal-gradient method
for many popular choices of pen(·), such as lp norm ‖·‖p(p ≥
1) [23] and total-variation norm [21] ‖ · ‖TV, etc.

In order to comply with non-negativity of Φ for the Poisson
multiple-measurement model, a constant offset is applied to
guarantee such a constraint. Specifically, we constitute Φ as
follows. Let Ψ

def
= Z√

m
and Φ

def
= Ψ + 1√

m
1m×n and the

sensing matrix is A = IK ⊗Φ and, for use below, we define
Ã = IK⊗Ψ. Note that Φ is a matrix with entries being either
0 or 2√

m
. In other words, the sensing matrix A consists of a

scaled-Rademacher matrix Ψ and a constant offset 1√
m

1m×n
keeping the sensing matrix non-negative.

In particular, for the estimator candidates set Γ defined in
(16), we have the following theorem, upon which performance
guarantees of MLE and relaxed-MLE are derived.

Theorem 4. Let Ã be generated as previously described. We
have

(1− ε)‖f‖22 ≤ ‖Ãf‖22 ≤ (1 + ε)‖f‖22,
∀f ∈ Γ, ε ∈ (0, 1) (17)

with probability at least 1−e·exp
(
− c1ε

2K2S4

mn4

)
, where c1 > 0

is a constant.

We consider a performance analysis for the proposed MLE
and relaxed-MLE as in (14) and (15), with estimate f̂ for true
f∗ evaluated via the risk function

R(f̂ , f∗) =
1

K

‖f̂ − f∗‖2
‖f∗‖2

. (18)

Note that the above risk function calculates the average
total-estimation error per measurement, where the error term
has been normalized. The adopted risk function measures
the average recovery error per measurement. Although small
average error does not necessarily lead to small total recovery
error, the employed risk function reflects the average recovery
performance of the sensing system and serves as a meaningful
evaluation criterion. We assume that f∗ is drawn from a distri-
bution whose support satisfies assumptions A1 and A2, and we
present a performance guarantee for the MLE which quantifies
the expected risk bounds with respect to that distribution.

Theorem 5. Let ε be an arbitrary constant in (0, 1). With
assumptions A1-A2 and the designed sensing matrix A gener-
ated as previously described, the expected risk bound between
the true signal f∗ and the estimate f̂ output by the MLE in
(14) is bounded by

E[R(f̂ , f∗)]

≤ E

{√
C1 min

f∈Γ

{(
mK

cS
((1 + ε)‖f − f∗‖22) + 2 pen(f)

)}
(19)

with probability at least 1− m
2n − e · exp

(
− c1ε

2KS4

mn4

)
, where

C1 =
(

8n
√
mn

(1−ε)SK
√
K

)
and c1 > 0 is a constant. The expecta-

tion is taken with respect to an arbitrary joint distribution of
f∗ whose support satisfies assumptions A1-A2.

Similarly, we also establish a performance bound for the
relaxed-MLE in (15).

Theorem 6. Let ε be an arbitrary constant in (0, 1) and fix
τ1 ≥ 2. With assumptions A1-A2 and the designed sensing
matrix A generated as previously described, the expected risk
bound between the true signal f∗ and the estimate f̂ output
by the MLE in (15) is bounded by

E[R(f̂ , f∗)]

≤ E

{√
C1 min

f∈Γ

{(
mK

cS
((1 + ε)‖f − f∗‖22) + τ1 pen(f)

)}
(20)

with probability at least 1− m
2n − e · exp

(
− c1ε

2KS4

mn4

)
, where

C1 =
(

8n
√
mn

(1−ε)SK
√
K

)
and c1 > 0 is a constant. The expecta-

tion is taken with respect to an arbitrary joint distribution of
f∗ whose support satisfies assumptions A1-A2.

Theorems 5 and 6 provide quantitative performance charac-
terizations for the MLE algorithm with respect to the number
of measurements K. According to the theorem, when the as-
sumptions are valid and m,n,K, ε are fixed, the performance
of the proposed MLEs are governed by the minimization
terms as in (19) and (20), which represent the minimal error
one could achieve over all the candidate estimators in Γ. In
practice, the Γ set can be simply selected as a quantized
version of the continuous search area of interests. In the case
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of uniform quantization, the minimization terms in (19) and
(20) are controlled by the designated quantization level.

The coefficient C1 is clearly a decreasing functions of K,
via which it has been suggested that the average performance
of MLE can be potentially improved by increasing the num-
ber of measurements K. This result has rigorously justified
the intuition that reconstruction quality enhances when more
measurements are available; a similar phenomenon under the
Gaussian measurement model has been observed and justified
in [10].

The case of a Poisson single-measurement model has been
considered in [24], [20]. As previously mentioned, a fun-
damental difference is that the sensing matrix A for the
Poisson multiple-measurement model is limited to a block-
diagonal structure, rather than being arbitrary, as in the single-
measurement case. The block-diagonal measurement matrix
poses a more-challenging (and practical) problem. Hence, the
proof techniques from [24], [20] cannot be applied to the
multiple-measurements case, and the non-negativity constraint
on the sensing matrix also invalidates adaptation of the results
in [11], [10]. Furthermore, it is undesirable to derive a perfor-
mance bound by repeatedly applying the single measurement
result in [20] for each individual measurement, which claims
a performance bound valid with probability p for recovering a
single measurement. This simple strategy would yield a bound
for recovering multiple measurements valid with probability
pK , and this probability decays to 0 with increasing number of
measurements K, thereby eventually invalidating the derived
performance bound.

VI. CONCLUSION

A new concentration-of-measure inequality for a block-
diagonal Rademacher-ensembled sensing matrix has been
derived, which aims to bridge classical single-measurement
CS results to multiple-measurement models. A few applica-
tions of the newly-derived concentration-of-measure inequality
have been presented for the Gaussian multiple-measurement
case. In particular, Johnson-Lindenstrauss-type results and a
compressed-domain classification result have been derived.

By constituting the random sensing matrix via Rademacher-
ensembles, we have been able to adapt the new concentration-
of-measure inequality as well to the Poisson multiple-
measurement model, and theoretical performance guarantees
for signal recovery via proposed MLE algorithms have been
established. By revealing the performance guarantees, one
may apply the proposed MLE algorithms to address several
practical signal reconstruction problems for Poisson multiple-
measurement model, known to be relevant to emerging appli-
cations such as X-ray scattering imaging [12].
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