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Abstract—This paper offers a characterization of performance
limits for classification and reconstruction of high-dimensional
signals from noisy compressive measurements, in the presence
of side information. We assume the signal of interest and the
side information signal are drawn from a correlated mixture of
distributions/components, where each component associated with
a specific class label follows a Gaussian mixture model (GMM).

We provide sharp sufficient and/or necessary conditions for the
phase transition of the misclassification probability and the recon-
struction error in the low-noise regime. These conditions, which
are reminiscent of the well-known Slepian-Wolf and Wyner-Ziv
conditions, are a function of the number of measurements taken
from the signal of interest, the number of measurements taken
from the side information signal, and the geometry of these
signals and their interplay.

Index Terms—Classification, reconstruction, Gaussian mixture
models, side information.

I. INTRODUCTION

Compressive sensing (CS) is a signal acquisition paradigm
that offers the means to simultaneously sense and compress a
signal without any or with minimal loss of information [1],
[2]. In particular, this emerging paradigm shows that it is
possible to perfectly reconstruct an n-dimensional s-sparse
signal (sparse in some orthonormal dictionary or frame) with
overwhelming probability with only O(s log(n/s)) linear ran-
dom measurements or projections. The signal recovery is per-
formed using tractable `1 minimization methods [3] or iterative
methods, like greedy matching pursuit [4]. Generalizations of
the CS paradigm to settings including other signal processing
operations in the compressive domain, such as detection and
classification, have also become popular recently [5].

However, it is often the case that one is also presented
at the decoder with additional information – known as side
information – in the form of another signal that exhibits some
correlation with the signal of interest. This paper is concerned
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with the impact of side information in the classification and
reconstruction of high-dimensional signals from compressive
measurements.

The problem of reconstruction of a sparse signal in the
presence of partial information about the desired signal, using
reconstruction algorithms akin to those from CS, has been
recently considered [6]–[10]. For example, [6] considers the
reconstruction of a signal by leveraging partial information
at the decoder about the support of the signal; [7] considers
the reconstruction of the signal by using an additional noisy
version of the signal at the decoder. In [8] the authors take the
side information to be associated with the previous scans of a
certain subject in dynamic tomographic imaging. In this case,
`1-norm based minimization is used for recovery, by adding
an additional term that accounts for the distance between the
recovered image and the side information snapshot. A similar
approach has been adopted recently in [9], that is shown to
require a smaller number of measurements than traditional
CS in recovering magnetic resonance images. A theoretical
analysis of the number of measurements sufficient for reliable
recovery with high probability in the presence of side informa-
tion for both `1/`1 and mixed `1/`2 reconstruction strategies
is provided in [10].

This paper studies the impact of side information on the
classification and reconstruction of a high-dimensional signal
from noisy, compressive measurements, by assuming that both
the signal of interest and the side information are drawn from
a joint Gaussian mixture model (GMM). There are multiple
reasons for adopting a GMM representation, which can be seen
as a union of (linear or affine) subspaces, where each subspace
is associated with the translation of the image of the (possibly
low-rank) covariance matrix of each Gaussian component
within the GMM. In fact, low-rank GMM priors have been
shown to approximate signals in compact manifolds [11] and
have been shown to provide state-of-the-art results in practical
problems in image processing [12], dictionary learning [11],
image classification [13] and video compression [14]. Of
particular relevance, the adoption of GMM priors also offers
an opportunity to analyze phase transitions in the classification
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or reconstruction error [15]–[17]1.
Our main contribution is the analysis of phase transition

regions associated to the classification and reconstruction error
in the presence of side information at the decoder.

In the remainder, we denote matrices with boldface upper-
case letters (X) and column vectors with boldface lower-case
letters (x). The symbols In and 0m×n represent the identity
matrix of dimension n × n and the all-zero-entries matrix of
dimension m × n, respectively (subscripts will be dropped
when the dimensions are clear from the context). Im(·) denotes
the (column) image of a matrix. E [·] represents the expectation
operator.

For reasons of space, we relegate the mathematical proofs
of our results to the extended version of the work [18].

II. MODEL

We consider both the classification and reconstruction of
a high-dimensional signal from noisy compressive measure-
ments in the presence of side information, as shown in Fig. 1.
In particular, we assume that the decoder has access to a set
of noisy linear measurements y1 ∈ Rm1 associated with the
desired signal x1 ∈ Rn1 given by:

y1 = Φ1 x1 + w1, (1)

where Φ1 ∈ Rm1×n1 is the projection kernel2 and w1 ∼
N (0, I · σ2) is additive Gaussian noise that models noise
introduced by the measurement process. We also assume that
the decoder has access to another set of linear measurements
y2 ∈ Rm2 – called side information – associated with another
signal x2 ∈ Rn2 given by:

y2 = Φ2 x2 + w2, (2)

where Φ2 ∈ Rm2×n2 is the projection kernel associated with
the side information and w2 ∼ N (0, I · σ2) is Gaussian addi-
tive noise, which is assumed, for simplicity, to have the same
covariance as the noise w1. We focus on random projection
kernels, where both matrices Φ1 and Φ2 are assumed to be
drawn from left rotation-invariant distributions3. For the sake
of compact notation, we also use the symbol

Φ =

[
Φ1 0
0 Φ2

]
. (3)

We consider underlying class labels C1 ∈ {1, . . . ,K1} and
C2 ∈ {1, . . . ,K2}, where C1 is associated with the signal of
interest x1 and C2 is associated with the side information
signal x2. We assume that x1 and x2, conditioned on the

1In the low-noise regime, classification and reconstruction depend only on
the dimensions of subspaces in the model and their intersections. We are
extending this form of analysis.

2In the remainder of the paper, we will use interchangeably the terms
projection/measurement/sensing kernel or matrix.

3A random matrix A ∈ Rm×n is said to be (left or right) rotation-invariant
if the joint probability density function (pdf) of its entries p(A) satisfies
p(ΘA) = p(A), or p(AΨ) = p(A), respectively, for any orthogonal
matrix Θ or Ψ. A special case of (left and right) rotation-invariant random
matrices is represented by matrices with independent identically distributed
(i.i.d.), zero-mean Gaussian entries with fixed variance.

C1

x1
Φ1 +

y1
decoder Ĉ1/x̂1

w1 ∼ N (0, I · σ2)

C2

x2
Φ2 +

y2
side information

w2 ∼ N (0, I · σ2)

Fig. 1. Classification and reconstruction with side information. The user
attempts to generate an estimate Ĉ1 of the index of the component from
which the input signal x1 was drawn (classification) or it aims to generate
an estimate x̂1 of the input signal itself (reconstruction) on the basis of the
observation of both measurement vectors y1 and y2.

underlying class labels C1 = i and C2 = k, are drawn from
a joint distribution p(x1,x2|C1 = i, C2 = k), with the class
labels drawn with probability pC1,C2(i, k). We assume that the
decoder, for both classification and reconstruction purposes,
knows perfectly the joint probability mass function (pmf)
pC1,C2

(i, k) of the discrete random variables corresponding to
the class labels of x1 and x2, and the conditional distributions
p(x1,x2|C1 = i, C2 = k). For the problem of classification
with side information, the objective is to estimate the value of
the index C1 that identifies the distribution/component from
which x1 was drawn, on the basis of the observation of both
vectors y1 and y2. The minimum average error probability in
classifying C1 from y1 and y2 is achieved by the maximum
a posteriori (MAP) classifier [19], given by

Ĉ1 = arg max
i∈{1,...,K1}

p(C1 = i|y1,y2), (4)

where p(C1 = i|y1,y2) is the a posteriori probability of class
C1 = i conditioned on y1 and y2.

For the problem of reconstruction with side information,
the objective of the decoder is to estimate the signal x1

from the observation of y1 and y2. In particular, we consider
reconstruction obtained via the conditional mean estimator

x̂1(y1,y2) = E [x1|y1,y2] =

∫
x1p(x1|y1,y2)dx1, (5)

where p(x1|y1,y2) is the posterior pdf of x1 given y1 and
y2, which minimizes the reconstruction error.

A. Signal, Side Information and Correlation Models

We adopt a multivariate Gaussian model for the distribution
of x1 and x2, conditioned on (C1, C2) = (i, k), i.e.

p(x1,x2|C1 = i, C2 = k) = N (µ(ik)
x ,Σ(ik)

x ), (6)

where

µ(ik)
x =

[
µ

(ik)
x1

µ
(ik)
x2

]
, Σ(ik)

x =

[
Σ

(ik)
x1 Σ

(ik)
x12

Σ
(ik)
x21 Σ

(ik)
x2

]
, (7)

so that p(x1|C1 = i, C2 = k) = N (µ
(ik)
x1 ,Σ

(ik)
x1 ) and

p(x2|C1 = i, C2 = k) = N (µ
(ik)
x2 ,Σ

(ik)
x2 ).

The motivation for this choice is associated by the fact that
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this apparently simple model can accommodate a wide range
of signal distributions. In fact, note that the joint pdf of x1 and
x2 follows a GMM model, so that we can in principle approx-
imate very complex distributions by incorporating additional
terms in the decomposition [20]. Note also that the conditional
marginal pdfs of x1 and x2 also follow GMM models.

Then, we define the ranks of the matrices appearing in the
model in (7) as follows:

r(ik)x1
= rank(Σ(ik)

x1
) , r(ik)x2

= rank(Σ(ik)
x2

) (8)

which represent the dimensions of the subspaces spanned by
input signals x1 and side information signals x2, respectively,
drawn from the Gaussian distribution corresponding to the
indices C1 = i, C2 = k;

r(ik,j`)x1
= rank(Σ(ik)

x1
+ Σ(j`)

x1
) (9)

which represents the dimension of the sum of the subspaces
spanned by input signals drawn from the Gaussian distribution
corresponding to the indices C1 = i, C2 = k and those from
the Gaussian distribution corresponding to the indices C1 =
j, C2 = `; analogously, we define

r(ik,j`)x2
= rank(Σ(ik)

x2
+ Σ(j`)

x2
); (10)

finally, the corresponding dimensions spanned collectively by
input and side information signals are given by

r(ik)x = rank(Σ(ik)
x ) , r(ik,j`)x = rank(Σ(ik)

x + Σ(j`)
x ). (11)

We also define the ranks:

r(ik) = rank
(
ΦΣ(ik)

x ΦT
)

(12)

r(ik,j`) = rank
(
Φ(Σ(ik)

x + Σ(j`)
x )ΦT

)
, (13)

that represent the dimension of the subspace spanned collec-
tively by the projections of input signals and the projections of
side information signals drawn from the Gaussian distribution
identified by the component indices C1 = i, C2 = k,
and the dimension associated to the sum of the subspaces
corresponding to classes C1 = i, C2 = k and C1 = j, C2 = `.

The quantities in (8)–(13), which provide a concise descrip-
tion of the geometry of the input source, the side information
source, and the geometry of the interaction of such sources
with the projections kernels, will be fundamental to determin-
ing the performance of the classification and reconstruction of
high-dimensional signals from compressive measurements in
the presence of side information.

III. CLASSIFICATION WITH SIDE INFORMATION

We first consider signal classification in the presence of
side information. The basis of the analysis is an asymptotic
characterization – in the limit of σ2 → 0 – of the behavior of
an upper bound to the misclassification probability associated
with the optimal MAP classifier (rather than the exact misclas-
sification probability which is not tractable). In particular, via
the Bhattacharyya bound [19] in conjunction with the union
bound, the misclassification probability can be upper bounded

as follows:

P̄err =

K1∑
i=1

K1∑
j=1
j 6=i

pC1
(i)

∫ √√√√ K2∑
k.`=1

pC2|C1
(k|i)pC2|C1

(`|j)

·
√
p(y1,y2|C1 = i, C2 = k)

·
√
p(y1,y2|C1 = j, C2 = `)dy1dy2, (14)

where pC2|C1
(k|i) =

pC1,C2
(i,k)

pC1
(i) and pC1|C2

(i|k) =
pC1,C2

(i,k)

pC2
(k)

are the conditional pmfs of C2 and C1.
The asymptotic characterization that we discuss below iden-

tifies the presence or absence of an error floor in the upper
bound to the misclassification probability as σ2 → 0, leading
to conditions on the number of measurements that guarantee
perfect classification in the low-noise regime, i.e.,

lim
σ2→0

P̄err(σ
2) = 0. (15)

Note that the characterization of the presence or absence of an
error floor in the upper bound of the misclassification proba-
bility also leads to the characterization of a phase transition
region in terms of m1 and m2, where within this region (15)
holds and outside the region (15) is not verified. Note also that
the boundaries of the region associated to the upper bound of
the misclassification probability represent also lower bounds
of the boundaries of the corresponding region associated with
the true error probability.

Note that all the pairs of indices (i, k) such that
pC1,C2(i, k) = 0 clearly do not affect the phase transition
region. Therefore, we can define the set of index pairs of
interest as

S = {(i, k) ∈ {1, . . . ,K1} × {1, . . . ,K2} : pC1,C2
(i, k) > 0} .

(16)
We also define the set of index quadruples

SSIC = {(i, k, j, `) : (i, k), (j, `) ∈ S, i 6= j}. (17)

In the next theorem, we provide conditions on the number of
measurements m1 and m2 that are sufficient to drive the upper
bound to the misclassification probability to zero when σ2 →
0, that is, in order to achieve the phase transition of the upper
bound to the misclassification probability, and, therefore, that
are also sufficient to drive the true misclassification probability
to zero when σ2 → 0.

Theorem 1: Consider the model in (1) and (2), where the
input signal x1 and the side information signal x2 are drawn
according to the class-conditioned joint distribution (6).

If r(ik,j`)x > r
(ik)
x , r

(j`)
x , ∀(i, k, j, `) ∈ SSIC, then, with prob-

ability 1, the upper bound to the misclassification probability
(14) approaches zero when σ2 → 0 if the following conditions
hold ∀(i, k, j, `) ∈ SSIC:

1) if r(ik,j`)x1 > r
(ik)
x1 , r

(j`)
x1 and r(ik,j`)x2 > r

(ik)
x2 , r

(j`)
x2 :

m1 > min{r(ik)x1
, r(j`)x1

} or m2 > min{r(ik)x2
, r(j`)x2

}
or m1 +m2 > min{r(ik)x , r(j`)x }; (18)
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m2

m1b1

b2

m
1 +

m
2 =

c

m2

m1b1a1

a2

b2

m2

m1b1a1

a2

b2

m2

m1b1a1

a2

b2

Fig. 2. Representation of the conditions on m1 and m2 for phase transition,
for the 4 different cases encapsulated in Theorem 1. In all cases a1 =

min{r(ik)x − r
(ik)
x2

, r
(j`)
x − r

(j`)
x2
} + 1, b1 = min{r(ik)x1

, r
(j`)
x1
} + 1, a2 =

min{r(ik)x − r
(ik)
x1

, r
(j`)
x − r

(j`)
x1
} + 1, b2 = min{r(ik)x2

, r
(j`)
x2
} + 1 and

c = min{r(ik)x , r
(j`)
x }+ 1. The shaded regions represent values of m1 and

m2 that satisfy the conditions (18)–(21).

2) if r(ik,j`)x1 = r
(ik)
x1 = r

(j`)
x1 and r(ik,j`)x2 = r

(ik)
x2 = r

(j`)
x2 :

m1 > min{r(ik)x − r(ik)x2 , r
(j`)
x − r(j`)x2 }

m2 > min{r(ik)x − r(ik)x1 , r
(j`)
x − r(j`)x1 }

m1 +m2 > min{r(ik)x , r
(j`)
x }

; (19)

3) if r(ik,j`)x1 > r
(ik)
x1 , r

(j`)
x1 and r(ik,j`)x2 = r

(ik)
x2 = r

(j`)
x2 :

m1 > min{r(ik)x1
, r(j`)x1

}

or

{
m1 > min{r(ik)x − r(ik)x2 , r

(j`)
x − r(j`)x2 }

m1 +m2 > min{r(ik)x , r
(j`)
x }

; (20)

4) if r(ik,j`)x1 = r
(ik)
x1 = r

(j`)
x1 and r(ik,j`)x2 > r

(ik)
x2 , r

(j`)
x2 :

m2 > min{r(ik)x2
, r(j`)x2

}

or

{
m2 > min{r(ik)x − r(ik)x1 , r

(j`)
x − r(j`)x1 }

m1 +m2 > min{r(ik)x , r
(j`)
x }

. (21)

The characterization of the numbers of measurements m1

and m2 that are sufficient to achieve the phase transition in
the upper bound to the misclassification probability is divided
into 4 cases, depending on whether the range spaces Im(Σ

(ik)
x1 )

and Im(Σ
(j`)
x1 ), or the range spaces Im(Σ

(ik)
x2 ) and Im(Σ

(j`)
x2 ),

are distinct or not4. Fig. 2 depicts the tradeoff between the
values of m1 and m2 associated with these different cases.
Note also that the values of m1 and m2 associated with the
phase transition of the upper bound of the misclassification
probability lie in the intersection of the regions corresponding
to index quadruples (i, k, j, `) ∈ SSIC.

In case 1), the range spaces associated to the input co-
variance matrices are all distinct, and by observing (18) we
can clearly determine the beneficial effect of the correlation

4We recall that, given two positive semidefinite matrices A and B with ranks
rA = rank(A), rB = rank(B), rAB = rank(A+B), Im(A) = Im(B)
if and only if rAB = rA+rB

2
[17, Lemma 2] and then, if and only if

rAB = rA = rB.

between x1 and x2 in guaranteeing the phase transition for
the upper bound to the misclassification probability. Namely,
we note that the phase transition is achieved either when
error-free classification is possible from the observation of
y1 alone (m1 > min{r(ik)x1 , r

(j`)
x1 }) or from the observation

of y2 alone (m2 > min{r(ik)x2 , r
(j`)
x2 }) cf. [16], but, more

importantly, the condition m1+m2 > min{r(ik)x , r
(j`)
x } shows

the benefit of side information in order to obtain the phase
transition with a lower number of measurements. In fact, when
r
(ik)
x < r

(ik)
x1 + r

(ik)
x2 , joint classification of y1 and y2 leads to

a clear advantage in the number of measurements needed to
achieve the phase transition with respect to the case in which
classification is carried independently from y1 and y2, despite
the fact that linear measurements are taken independently from
x1 and x2.

In case 2), the range spaces associated to the input co-
variance matrices are such that Im(Σ

(ik)
x1 ) = Im(Σ

(j`)
x1 ) and

Im(Σ
(ik)
x2 ) = Im(Σ

(j`)
x2 ) so that classification based on the

observation of y1 or y2 alone yields an error floor in the
upper bound of the misclassification probability [16]. In other
terms, input signals and side information signals from classes
(i, k) and (j, `) are never perfectly distinguishable. In this
case, the impact of correlation between the input signal and
the side information signal is clear when observing (19). In
fact, when combining measurements taken independently from
the vectors x1 and x2, it is possible to drive to zero the
misclassification probability, in the low-noise regime, provided
that the number of measurements m1 and m2 verify the
conditions in (19).

Finally, cases 3) and 4) represent intermediate scenarios in
which range spaces associated to x1 are distinct, but those
related to x2 are completely overlapping, and vice versa. We
note then how the sufficient conditions for phase transition in
(20) and (21) are given by combinations of the conditions in
(18) and (19).

IV. RECONSTRUCTION WITH SIDE INFORMATION

We now consider signal reconstruction in the presence of
side information. We are interested in the asymptotic charac-
terization of the minimum mean-squared error (MMSE)

MMSE(σ2) = E
[
‖x1 − x̂1(y1,y2)‖2

]
, (22)

where x̂1(y1,y2) is the conditional mean estimator in (5). In
the following, we determine conditions on the number of mea-
surements m1 and m2 that guarantee perfect reconstruction in
the low-noise regime, i.e., when σ2 → 0, that is

lim
σ2→0

MMSE(σ2) = 0, (23)

thus generalizing the results in [17] to the case when side
information is available at the decoder.

Note the characterization of such conditions also leads to
the characterization of a phase transition region in terms of
m1 and m2, where within this region (23) holds and outside
the region (23) is not verified.
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m2

m1r
(ik)
x1r

(ik)
x − r(ik)x2

r
(ik)
x − r(ik)x1

r
(ik)
x2

m
1 +m

2 = r (ik)x

Fig. 3. Representation of the conditions on m1 and m2 for phase transition of
the MMSE. The shaded region represents values of m1 and m2 that satisfy
the conditions (24) for a given pair of classes (i, k).

Theorem 2: Consider the model in (1) and (2), where the
input signal x1 and the side information signal x2 are drawn
according to the class-conditioned joint distribution (6). Then,
with probability 1, if

m1 > r(ik)x1
or

{
m1 > r

(ik)
x − r(ik)x2

m1 +m2 > r
(ik)
x

,∀(i, k) ∈ S (24)

then (23) is verified. Conversely, if (23) holds, then, with
probability 1, we also have

m1 ≥ r(ik)x1
or

{
m1 ≥ r(ik)x − r(ik)x2

m1 +m2 ≥ r(ik)x

,∀(i, k) ∈ S. (25)

The sufficient conditions in (24) show that the numbers of
measurements of x1 and x2 have to be collectively greater than
the largest among the dimensions of the spaces spanned by
signals x = [xT

1 xT
2 ]T in all Gaussian components (i, k) ∈ S.

Moreover, the measurements of x1 need to be enough to
capture signal components which are not correlated with the
side information, for all Gaussian components. Finally, the
condition m1 > r

(ik)
x1 is obtained trivially by considering

reconstruction of x1 from the measurements collected in the
vector y1, thus disregarding side information.

It is interesting to note that the necessary conditions for
the phase transition of the MMSE of GMM inputs are one
measurement away from the corresponding sufficient condi-
tions, akin to our previous results for the case without side
information [17], thus providing a sharp characterization of the
MMSE phase transition region. Finally, note that the values of
m1 and m2 that are sufficient for the MMSE phase transition
are obtained by considering the intersection of regions akin to
that in Fig. 3 for all the pairs of classes (i, k) ∈ S.

V. CONCLUSIONS

We have considered a linear measurement model, where
a decoder has access to noisy linear projections of both the
signal of interest and the side information signal, in order
to carry out either classification or reconstruction. We have
also considered a model where the joint distribution of the
signal of interest and the side information, conditioned on
some underlying class labels, is a multivariate Gaussian; the
marginal distributions of the signal and the side information
conditioned on a class label are Gaussian mixtures.

We have provided a characterization of sharp sufficient
conditions for a phase transition in the misclassification

probability and necessary and sufficient conditions for the
phase transition of the reconstruction error (the performance
quantities under consideration), as a function of the geometry
of the sources, the geometry of the measurement kernels and
their interplay. Our results are reminiscent of the Slepian-
Wolf and the Wyner-Ziv conditions for joint source coding
and source coding with side information.
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