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Mapping Equivalence for Symbolic Sequences:
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Abstract—Processing of symbolic sequences represented by
mapping of symbolic data into numerical signals is commonly
used in various applications. It is a particularly popular approach
in genomic and proteomic sequence analysis. Numerous mappings
of symbolic sequences have been proposed for various applica-
tions. It is unclear however whether the processing of symbolic
data provides an artifact of the numerical mapping or is an
inherent property of the symbolic data. This issue has been long
ignored in the engineering and scientific literature. It is possible
that many of the results obtained in symbolic signal processing
could be a byproduct of the mapping and might not shed any light
on the underlying properties embedded in the data. Moreover,
in many applications, conflicting conclusions may arise due to
the choice of the mapping used for numerical representation of
symbolic data. In this paper, we present a novel framework for
the analysis of the equivalence of the mappings used for numerical
representation of symbolic data. We present strong and weak
equivalence properties and rely on signal correlation to charac-
terize equivalent mappings. We derive theoretical results which
establish conditions for consistency among numerical mappings
of symbolic data. Furthermore, we introduce an abstract mapping
model for symbolic sequences and extend the notion of equivalence
to an algebraic framework. Finally, we illustrate our theoretical
results by application to DNA sequence analysis.

Index Terms—DNA sequence analysis, symbolic signal pro-
cessing, transform equivalence.

I. INTRODUCTION

I NFORMATION is provided in many forms. At times, infor-
mation is conveyed numerically. More often, information is

represented in the form of symbols such as characters, tags, etc.
For example, the areas of genomic and proteomic signal pro-
cessing focus on sequences of nucleotides and amino acids, re-
spectively [1]. The aim of symbolic signal analysis is to process
symbolic data elements in order to extract useful information.

In general, symbolic information is represented as a se-
quence of symbols (possibly of infinite length) , where

and is a set of all possible symbols. For example,
could be a collection of the 26-lowercase English letters, i.e.,

, or the four nucleotides in a genomic se-
quence, i.e., . In statistical literature, symbolic
data is usually called categorical data [2]. The use of Markov
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chain models and hidden Markov models has been examined
for time-domain analysis of genomic and proteomic data
[3]–[5]. However, we often seek to rely on frequency-domain
analysis methods of symbolic signals. Unfortunately, symbolic
sets do not generally possess an algebraic structure that allows
us to define mathematical operations (e.g., group, ring, or field).
In traditional signal processing, the set corresponds to real-
or complex-valued numbers, i.e., or , which form
an algebraic field. However, attempts to define mathematical
operations such as addition and multiplication on symbolic
data has raised many questions about the meaning of the results
obtained using such methods.

Several techniques exist which incorporate numerical and
symbolic processing in an effective way to develop symbolic
analysis systems [6]. Software systems for symbolic compu-
tational algebra (e.g., Mathematica, Maple, etc.) represent a
successful example of this approach. Such systems, however,
are application-specific and difficult to realize for a broad
class of symbolic signal processing applications. There are
also various techniques for analyzing correlations, period-
icities, etc. that do not require the aid of numerical symbol
mappings. Among these techniques, the mutual information
function (MIF) [7] is one of the most important. The main
advantage of these methods is that numerical mappings are not
required. Moreover, it can be shown that methods such as MIF
can capture any type of statistical dependence. The main disad-
vantages of these techniques, however, are that they generally
provide less specific information than correlation analysis and
they often suffer from a systematic overestimation of mutual
information for finite sequences. Nevertheless, in order to ex-
tract the mathematical and statistical information embedded in
symbolic sequences, we wish to employ the powerful analysis
tools developed in traditional signal processing, e.g., Fourier
transform, correlation function, etc. We must therefore map
the symbolic elements into numerical values. The resulting
numerical sequence should preserve the information embedded
in the symbolic data. Moreover, it should allow traditional
signal processing techniques to extract the salient information
about the symbolic sequences from the corresponding numer-
ical signals. For instance, in DNA sequences, we have a finite
alphabet associated with the four nucleotides in the genome,
i.e., . The mapping used for the representa-
tion of genomic data must preserve the inherent structure of
DNA sequences. In particular, if we choose a mapping such
as , we would not preserve
uniqueness since and are mapped to the same value.

Numerous mappings have been proposed for the numerical
representation of DNA sequences. Buldyrev et al. [8] proposed
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various mapping rules for the representation of nucleotide se-
quences into one-dimensional numerical sequences based on the
purine–pyrimidine (RY) rule, hydrogen-bond energy rule, etc.
Li and Kaneko [9] and Voss [10] used the indicator sequence
method, which essentially maps the symbol to a standard basis
of the 4-D Euclidean space . Berthelsen et al. [11] revised
the method introduced in [8] by taking the molecular mass and
hydrophobicity into account in representation of genomic data.
Silverman and Linsker [12] relied on the simplex method, which
maps the symbol to the vertices of a regular simplex. Cristea and
Anastassiou [13], [14] proposed the tetrahedral mapping, which
maps the nucleotides into corners of a tetrahedron. Stoffer et al.
[15] introduced a mapping whose aim is to accentuate the pe-
riodic features embedded in genomic sequences for stationary
symbolic sequence analysis. Wang and Johnson [16] extended
the method proposed by Stoffer et al. [15] for non-stationary se-
quence analysis. Rushid and Tuqan [17] proposed the Z-curve
mapping, which is a unique 3-D curve representation whose se-
quences are composed of binary values, i.e., 1 and 1. They also
proposed a matrix-based framework to combine many widely
used mapping strategies in genomic sequence analysis [18].

Each of the large number of numerical mappings used for
the representation of genomic sequences can be justified for
various applications. This raises several fundamental questions:
What are the merits of each mapping used for the analysis of
DNA sequences? How can we compare the results obtained
from different numerical mappings? Indeed, it is impossible
to determine which mapping is preferable. Furthermore, it is
conceivable that distinct mappings could lead to contradictory
conclusions. In fact, several contradictory results have arisen in
the field of genomic sequence analysis. Most notably, the study
of long-range correlations in coding and non-coding DNA
sequences has been contested by several contradictory results
[10], [19], [20]. Investigation using a large DNA sequence
database did not resolve this dispute; in fact, the controversy
grew even further [21]. Bouaynaya and Schonfeld [22], [23]
shed light on this dilemma by demonstrating that a certain class
of genomic sequences are inherently non-stationary and thus
one of the reasons for the contradictory conclusions stems from
the use of stationary time-series analysis tools. Moreover, they
determined experimentally that the results obtained remained
invariant over a large class of numerical mappings used for
the representation of DNA sequences. Nonetheless, the exper-
imental study conducted by Bouaynaya and Schonfeld in [22]
and [23] cannot be used to ascertain with certainty whether
the different numerical mappings used for representation of
genomic sequences contributed to the contradictory findings
reported in the literature [10], [19], [20].

To ensure a clear understanding of the implications of the dif-
ferent choices used for numerical representation of symbolic
data, we must develop a fundamental new approach that can
be used to characterize the fundamental properties of numerical
mappings. Specifically, it is essential that we establish a map-
ping equivalence theory for symbolic data that can be used to
guarantee consistency among a class of numerical representa-
tions. With the aid of a mapping equivalence theory we could
determine whether different mappings should yield compatible
results, i.e., whether the mappings used for the analysis of the

same data lead to consistent conclusions. Moreover, the theory
can indicate when distinct mappings could lead to contradictory
results and thus comparison of the corresponding conclusions is
futile.

In this paper, we provide a mapping equivalence theory for
the numerical representation of symbolic data undergoing trans-
formation by an operator. We focus primarily on the mapping

which maps the symbols to the -dimensional Eu-
clidean space. In Section II, we first propose a framework for the
analysis of different numerical mappings undergoing transfor-
mation by an analytic operator using Taylor’s expansion. More-
over, we emphasize the investigation of first- and second-order
operators including the correlation function and Fourier trans-
form. These operators are widely used in signal processing and
analysis and thus play an important role in this presentation. In
Section II-A, we provide an analysis of the correlation between
different numerical mappings of a symbolic sequence. In par-
ticular, we derive conditions for strong equivalence captured by
perfect correlation among distinct mappings. In Section II-B, we
explore a relaxed similarity measure between distinct numerical
mappings. Specifically, we provide conditions for weak equiva-
lence which is characterized by preservation of the local extrema
of the representation. In Section III, we introduce an abstract
mapping model and extend the concept of equivalence to the
generalized mapping model. In Section IV, we present experi-
mental results which illustrate the significance of the proposed
mapping equivalence theory in symbolic signal processing ap-
plications. In this presentation, the simulations are focused ex-
clusively on analysis of genomic sequences. The results pre-
sented in this paper, however, are applicable for any symbolic
signal modeled by a discrete alphabet with a finite cardinality
and independent of particular statistical properties such as sta-
tionarity, etc. Finally, we provide a brief summary and discus-
sion of our results in Section V.

II. EUCLIDEAN MAPPING EQUIVALENCE FOR

SYMBOLIC SEQUENCES

Given , where and , here means
the cardinality of the set. is a mapping from to , i.e.,

. After the mapping we obtain a vector
sequence . is a transformation from
to . is an analytic operator on the numerical sequence
and maps into parameterized by . We also assume that

. We classify the problems as in the following cases.
1) Given , determine the consistency between

and . We need also figure out the largest
class of operators which shows consistent results for two
mappings under the given .

2) Given and , if and are consistent for any sym-
bolic sequence . Find out the largest class of such
transformation which preserves the consistency. Also
figure out the largest class of transformation preserving
the consistency for given mapping .

The consistency here means we require the results under two
different mappings to be similar in certain extent. In general
may not be linear. We will use Taylor’s expansion to expand the
operator. We vectorize the vector sequence
to a large vector . Consider the Taylor’s expansion
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of the analytic operator. . Without using the
common scalar form representation of Taylor’s expansion [24],
we shall present it in a concise form by using tensor product.
First, we define the gradient operator as

(1)

Then the Taylor’s expansion of at can be represented
as the following form:

(2)

where is the th mode tensor product [25], and is the th
order gradient of , which is defined as

(3)

Furthermore, is defined as . For first- and second-
order terms, it is easy to check that it coincides with the well-
known definition of Gradient and Hessian .
So we can rewrite the Taylor’s expansion at as

(4)

A metric or measure is needed for measuring the consistency.
In general, there is no universal metric. Various operators may
have different metrics for different purposes. In many cases, it
is a reasonable principle to require the results of two different
mappings to be similar in some extent. In light of this principle,
we propose the following two kinds of metrics.

A. Strong Equivalence: Perfect Correlation

We will use the correlation coefficient to characterize the con-
sistency. First we provide the definition of the correlation coef-
ficient used in this paper.

Definition 1: Given , where .
is a transformation

from to is an operator on the numerical sequence.
is the mean value of the in the

space of parameter . is a measure on . The correla-
tion coefficient is defined as

(5)

The use of abstract integration provides a unified frame-
work for definition of the correlation coefficient. The mea-
sure can be chosen to be any Borel measure such as the

Lebesgue–Stieltjes or counting measures depending on the
properties of the operator. In practice, the measures we rely
upon are mainly the counting measure and the Lebesgue mea-
sure.

It is well known that the correlation coefficient is between
[26]. The correlation coefficient can be used as a mea-

sure to characterize the similarity of two different mappings.
For a given , if , then we say the transformation is a
strongly equivalent transformation of the map for an operator
and is a strong equivalence of .
When the correlation coefficient is 1, it means the two mappings
are the same up to a translation and scaling. This is the reason
that it is called “strongly equivalent.” Unfortunately, there is no
the universal equivalent transformation for arbitrary operator.
However, because of the importance of second-order statistics,
we shall emphasize on the second-order operators such as the
correlation function. From now on we will focus on the trans-
formation from to . For the case of mapping between
Euclidean spaces with a different dimensions, we will present a
detailed discussion in Section II-D.

We first consider the correlation function. The correlation
function of a sequence is defined as

(6)

Then if , we have the following theorem on the strongly
equivalent transformation .

Theorem 1: For non-trivial operator and linear transforma-
tion , the correlation coefficient if and only if the trans-
formation can be represented as is an or-
thogonal matrix and .

Proof: If , and is orthogonal. Then

(7)

Conversely, if . and . Then

(8)

where and is a constant. Since the equality
holds for any sequence and any . So , then is
orthogonal.

Actually, this property not only holds for correlation operator,
but also for a larger class of operators. Consider the Taylor’s
expansion of an operator . We would like first to introduce the
definition of bounded linear operator and Riesz representation
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theorem [27]. Then we will present a result for the first- and
second-order bounded operators.

Definition 2: Let be a normed space. A operator
is a bounded operator if is linear and there exists

, such that .
The bounded operator can be thought as an analog of BIBO

linear system in signal processing theory, which illustrates the
good behaved operators. Furthermore if the space is a Hilbert
space, we have the following theorem to characterize any linear
bounded operator.

Theorem 2 (Riesz Representation Theorem for Hilbert
Space): is a Hilbert space, then for any linear bounded op-
erator , there exists a unique , such that .

Note that with the usual dot product is a Hilbert space.
Therefore, Riesz Representation theorem for Hilbert space
holds for . As before, we vectorize the vector sequence

to a large vector . Then any linear
transformation can be represented in the form

. . .
(9)

i.e., .
Then we have the following theorem for equivalent transfor-

mation of first- and second-order operators.
Theorem 3: Any non-trivial bounded linear operator does not

have any non-trivial (scaled identity mapping) linear strongly
equivalent transformation. If rotation is a strongly equivalent
transformation for a bounded operator whose Taylor’s ex-
pansion does not have the third or higher-order terms, then
its Taylor’s expansion can not have first-order term and the
Hessian must have the form

...
...

. . .
...

(10)

where and .
For Fourier transform, in many situations, we focus exclu-

sively on the modulus of the transform of symbolic data, i.e.,
we discard the phase information. Since the module of con-
tinuous-time Fourier transform is invariant under rotation, it is
tempting to conclude that rotation is an equivalent transforma-
tion for the Fourier transform. However, the widely used form
of the Fourier transform used in much of the literature devoted
to DNA sequence analysis [16] is different from the classical
multi-dimensional Fourier transform. Fortunately, we are able
to show that rotation still yields an equivalent transformation.
We first define the Fourier transform as

(11)

where is a matrix, whose th column is . is the
frequency vector, i.e.,

(12)

If we vectorize to as before, can also be
represented as , where

(13)

Notice that , which is a second-order
operator and is of the form

...
...

. . .
...

(14)

where . By Theorem 3, rotation is a strongly
equivalent transformation for Fourier transform.

B. Weak Equivalence: Preservation of Local Extrema

In the previous section, we employed the correlation coef-
ficient as a metric to characterize the similarity for an operator
under transformation. However, as we can see, the strong equiv-
alence basically requires the result to be “exactly” the same.
While in many situations, we do not focus on whether or not the
result under two mapping strategies are exactly the same, i.e.,
the true numerical value of the result, but the relative relation
or the relative trend of the result. For example, when we use the
correlation function, in many cases, we only care where the peak
and valley points are located and the changing trends, which are
used to determine the periodicity structure of certain patterns.
In these cases, what we really need is to preserve the local ex-
tremums and local trend under the a transformation. So we first
give the definition of local minimum and maximum preserving
similarity, or in this paper what we call weakly equivalent.

Definition 3: Given , where .
is a transformation from

to and is an operator on the numerical sequence. We say
is weakly equivalent, if for every , which is a local minimal

or maximals for , then is also
a local minimal or maxima, l respectively.

A few easy observations and results follow. By definition
strong equivalence implies weak equivalence. Moreover, we
have the following propositions to determine weak equivalence.

Proposition 1: If is twice differentiable with re-
spect to , then is weakly equivalent, if for any , where

, the following conditions hold:

(15)

and

(16)

Authorized licensed use limited to: University of Illinois. Downloaded on November 21, 2009 at 14:02 from IEEE Xplore.  Restrictions apply. 



WANG AND SCHONFELD: MAPPING EQUIVALENCE FOR SYMBOLIC SEQUENCES 4899

Proof: If is a local maximal or local minimal, then
and

or . By the definition of weak
equivalence, (15) and (16) follow.

If , Then we have the following criterion to determine
weak equivalence.

Proposition 2: is weakly equivalent for an operator ,
where , if for any , the following condition holds:

(17)

Proof: Without loss of generality, we assume is a
local maximal for . then

and . If (17)
holds, we have and

. Thus, is also a
local maximal for .

As the importance of second-order statistics, specially we
would like to investigate the weakly equivalent transformation
for the correlation function. We first introduce a lemma.

Lemma 1: If the transformation is an inner-
product preserving isometry, i.e.,

, then , where is an orthogonal matrix. Hence,
is a bijective isometry.

Proof: First let , we have i.e.,
preserves the Euclidean norm. Since is on the ball

, we have , where is an
orthogonal matrix function. Let

(18)

where is orthonormal. Furthermore, let
and . then we have

(19)

(20)

Therefore . By Cauchy–Schwartz
inequality, we have

(21)

The equality holds if and only if
, but , thus . Therefore

. By the same ar-
guments we can show , where

is the standard basis of . So is a constant
orthogonal matrix, thus . This also shows is a
bijective isometry.

For correlation function, we have the following theorem
showing that generally speaking, rotation can be thought as the
“only” weakly equivalent transformation.

Theorem 4: For a fix length sequence, any transformation
which only brings small enough changes to the inner product
value under previous mapping will be a weakly equivalent trans-
formation for correlation function. However, if the length goes

to infinity, then rotation (or scaled rotation) is the only weakly
equivalent transformation for correlation function.

Proof: Consider the vector sequence . The corre-
lation function is

. Then we have

(22)

After the transformation, we have the correlation function

and
. By Proposition 2. is weakly equivalent if

has the same sign as .
Consider the alphabet , which

means we consider the symbol “ ” as a new symbol and
we extend the mapping on the newly added symbols as

, which also extends the transforma-
tion for be . Thus, finding the
weakly equivalent transformation is same to find the which
preserve the sign at each of cross correlation function for
the sequence and .

Let , where
or and . Also let

, where is the counting number for
the pair corresponding to which appears in the cross
correlation function . Therefore, we have

(23)

Define , where
, where corresponds to in the

in . Notice that will not change since it is determined by
the given sequence. After the transformation, the cross corre-
lation functions becomes . We need
and have the same sign for all . Notice that .
So every for a given sequence corresponds to a point on the
hyperplane in . If preservers signs for all
, then for each should reside in the same half plane

of . Because should have the same sign of .
In general, the sign will not all be positive or negative, since
that will means the correlation function is monotonic which
in general is not valid for all sequences. Consider all possible
symbol sequence of length and . Then

(24)

This implies should reside in the intersection of all half
plane determined by all sequences of length . Each half plane
is a convex cone, therefore the intersection is still a convex cone
as illustrated in Fig. 1. Since we have finitely many point on the
hyperplane . All reside in the first quadrant.
We can always construct two hyperplanes whose intersection is
in one quadrant. Thus, the intersection will be a small convex
cone in a quadrant. If is in that convex cone, then the
sign is all preserved, which means is a weakly equivalent
transformation. This proves the first claim.
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Fig. 1. Illustration for � and � ���. � ��� should reside in the convex cone
as the shaded area in the figure.

However, if we let go to infinity, first notice that the inter-
section will not be empty set, since is always in the intersec-
tion. But the points become dense in the first quadrant. We
can have a sequence of such that and with

. Therefore, the intersection will be squeezed to the
line . i.e., The . If the scaling , then

. Since the mapping is ar-
bitrary, which means it should hold for any and . By Lemma
1, is a rotation or a scaled rotation.

Conversely, by Theorem 1, we have rotation or scaled rotation
is a strongly equivalent transformation. Thus, it follows it is also
a weakly equivalent transformation.

From this theorem, we can see that rotation is essentially the
only weakly equivalent transformation for correlation function.
We can expand the class of operator having this property by
combining Theorem 4 and Theorem 3 with some technical con-
ditions, then we have the following corollary.

Corollary 1: If a second order operator whose Hessian is of
the form as (10) and all have the same sign and

, then rotation is essentially the only transformation which is
both strongly and weakly equivalent.

Proof: If the Hessian has the form above, then

(25)

where

Notice that the proof for correlation function follows here except
we shall use instead of

, where are all positive and

If the length goes to infinity, becomes dense, since
, then is in some non-degenerated bounded set,

which is still dense and resides in the first quadrant. Then the
argument above still valid. Thus, rotation is essentially the only
weakly equivalent for this kind of operator. By Theorem 1, ro-
tation is also the strongly equivalent transformation.

C. Mapping Between 1-D Euclidean Spaces

The case in which the transformation is lim-
ited to is particularly common in the literature. Moreover,
this case stands out and deserves special attention since the only
possible rotation on is obtained by scaling and interchanging
the mapping values. From Theorems 1 and 4, we observe that if
the mappings cannot be obtained by scaling and interchanging
the mapping values, the correlation and Fourier analysis results
obtained using these mappings are neither strongly nor weakly
equivalent. Therefore, in the 1-D case, the equivalent mapping
class under a given operator becomes fairly limited. In general,
distinct mappings will usually lead to inconsistent correlation
and Fourier analysis results. Another interesting fact about 1-D
mappings that can be derived from our previous results is that if
the mapping is binary (i.e., the range of the mapping can only
takes two distinct values), then we observe that the correlation
and Fourier analysis under any two such binary mappings are
always consistent since we can always obtain one of the map-
pings by scaling and interchanging the mapping values of the
other mapping.

D. Mapping Between Euclidean Spaces of Different
Dimensions

In the previous sections, we focused primarily on the trans-
formation , where . In this section, we
will present a brief discussion of the case where . If

, which means will transform the vector into a larger
dimensional Euclidean space. However, since there is a natural
embedding for into , we can always think the transforma-
tion as . For second-order operators which are
shown equivalent under rotation, we still have the same results
in this situation, except the rotation matrix here means a matrix
have orthonormal columns.

For the case , we can also think as is embedded
inside by the transform

(26)

where . Then we only need to research on
the new transformation . However, in this case,
we can see that we actually project the higher dimensional sub-
space into a lower dimensional space, rotation here in general
is not an equivalent transformation anymore. Intuitively, be-
cause of the projection, we lose information projected on

dimensions. Therefore, rotation is no longer an equivalent
transformation.

III. ABSTRACT MAPPING EQUIVALENCE FOR

SYMBOLIC SEQUENCES

A. Abstract Mapping Model and Examples

In previous sections, we mainly focused on properties of map-
pings, which map symbols into vector space. However, it is not
necessary to restrict to the vector space. Many classical con-
cepts in numerical signal processing can be extended to var-
ious algebraic structures. For example, the Fourier transform
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and Wavelet transform can be defined on group, ring and fi-
nite-field [28]–[30]. In this section, we introduce the general-
ized mapping to arbitrary semi-ring, ring or algebra structure.
We shall also extend the notion of equivalence defined in pre-
vious section.

For given finite alphabet , we define as collection of
all the symbolic sequences and define the binary operation as
concatenating two symbolic sequences. It can be shown
is a free semi-group [31]. is any semi-ring. Let to be col-
lection of all maps from to . For any , we denote
it as the formal series

(27)

we define two operation and on as

(28)

(29)

With these two binary operations, we have the following propo-
sition to show that we construct a new algebraic structure on .

Proposition 3: is a semi-ring or ring, then forms
a semi-ring or ring, respectively.

Proof: By the definition of addition, we can see that if
is a commutative monoid or abelian group, then

has the same property correspondingly. Therefore, it’s enough
to show to show is a semi-group, i.e., we need to show
the multiplication is associative.

(30)

Therefore the multiplication is associative. We proved the
proposition.

The ring is called as the semi-group ring of with
coefficients in . Furthermore, if is a left- module for some
ring . We can define for any

(31)

then is the left- algebra. The may be interpreted as the
generalized filter space, while the is as the signal space.
The multiplication can been thought as the extension of discrete
convolution. If we let and to be , the
multiplication degenerates to classical convolution. The symbol
sequence is mapped into a numerical sequence.

Another example of the abstract mapping model is the prob-
ability model. Consider all the outcomes of the words in .
Denote the outcome space as . is a -algebra on and is a
probability measure on . Notice that two set-operations on

and is analog of and and can be seen as 0 and 1 respec-
tively. Therefore, forms a semi-ring. The prob-
ability measure mapping here is interpreted as a semi-ring
mapping from to the semi-group ring of with coeffi-
cients in , which is defined as

(32)

The probability operations then can be realized by algebraic op-
erations on and the corresponding probability measure values
are obtained after the mapping .

B. Abstract Mapping Equivalence

For generalized mapping, the equivalence problem is still
worth for investigating. However, in the situation, it becomes
much more difficult than in a -vector space. The in general
does not possess any meaningful ordering. Therefore, the
definition of equivalence turns out to be limited for specific
application. Nevertheless, as we mentioned before, in most
cases, it is reasonable to require the result to be similar in
certain extent. From now on, we assume is a integral domain
with unity 1. We introduce the following definition for abstract
equivalence of a generalized mapping.

Definition 4: For any and are abstractly equiv-
alent, if the ideals they generated are the same, i.e., .

The next proposition shows the intuition and legitimacy of
this definition.

Proposition 4: if and only if , where has
multiplicative inverse.

Proof: If , then and for some
. We have

(33)

Since is integral domain, we have . and are
units.

Conversely, if , then . We have
and , therefore .

A loose interpretation of Proposition 4 implies that abstractly
equivalent mappings only differ by a “scale” and that the scale
change can be “reversed.” Let us first consider the case where
the semi-ring is or . In this case, forms a field and thus
any non-zero element is a unit. It is easy to show that in this
case strong equivalence implies abstract equivalence. To see that
strong equivalence is a special case of abstract equivalence, let
us consider mappings and to be defined at the origin “0” of
the field (i.e., we ignore the translation between the mappings).
If non-trivial mappings and are strongly equivalent, then

, where is a non-zero real or complex number. We ob-
serve that is a unit and therefore its inverse exists. Finally,
we note that the strongly equivalent mappings and are ab-
stractly equivalent.

We now extend the discussion to semi-ring given by
or . We note that forms a vector space over or . We
recall that the orthogonal linear operator is a necessary and suf-
ficient condition for strong equivalence under the correlation
function. Moreover, we note that the set of orthogonal linear
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Fig. 2. Two consistency measurements for correlation results using two map-
ping methods change with the growth of sequence length � for AD169 DNA
sequence. (a) Correlation coefficients for strong equivalence and (b) percentage
of points preserving local extremes for weak equivalence.

operators forms an orthogonal group given by
, where denotes the identity

operator. The orthogonal group contains the special orthogonal
group which represents usual rotations and is given by

and . Fi-
nally, we observe that if and are strongly equivalent under
the correlation function, then , where .
Since is in the orthogonal group , we note that it is a
unit (i.e., ). Therefore, we once again
conclude that strong equivalence implies abstract equivalence.

IV. APPLICATIONS AND EXAMPLES IN GENOMIC

SIGNAL PROCESSING

As we discussed in previous sections, approach of mapping
the symbolic sequence to is a widely adopted method for

Fig. 3. Percentage of points preserving local extremes for Fourier transform
using three different maps changes with growth of sequence length� for human
gene AD169 sequences.

symbolic signal process. Therefore, the consistency problem for
results using different mappings always arises. In this section,
we will apply our theory to genomic signal processing.

We conduct experiments on Human gene AD169 sequence
(GenBank accession no. X17403). We calculate the correlation
function as in (6) using two different mappings. The first one
maps the to the standard basis of cor-
respondingly. Then we use another mapping strategy, which
maps to to to and
to . These are two widely used mapping methods
[10], [11]. In Fig. 2(a), we show the changing of correlation
coefficient between the two correlation results with growth of
DNA sequence length , and in Fig. 2(b) we show how the per-
centage of the points having same local extremum property in
two results grows with . The second mapping is not obtained
by rotation of the first mapping. As a result, all these two met-
rics have a decreasing trend with the grown of length .

The example shows the same trends for two metrics between
two mappings. The similarity between the two results become
less and less, which finally may lead to an inconsistent anal-
ysis results due to the fact that two chosen mapping methods
are not equivalent for the correlation function. Thus, it does not
make sense to make comparison between the analysis result for
a given gene sequence under these two mapping methods.

In Fig. 4, we show the consistency measurements between
the power spectrum under the previous two mapping methods.
Although the equivalent transform we analyzed before does not
mainly focus on power spectrum, we can still find that the power
spectrum results using these two different mappings have the
trend to be inconsistent. Since the correlation and power spec-
trum are widely used and pervasive in statistic analysis, it sug-
gests the consistency problem should not be neglected when
comparing analysis results.

Research on statistical properties of coding and non-coding
regions in nucleotide sequences is an important topic in ge-
nomic signal processing [22], [23]. We shall also conduct ex-
periments on coding and non-coding regions of Human gene
NOC2L using the two mapping methods introduced earlier. As
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Fig. 4. Correlation coefficient of the power spectrum changes with growth of
sequence length � for Human gene AD169 sequences under the two mapping
methods.

Fig. 5. Correlation coefficients for strong consistency measure of correlation
functions changes with growth of � for coding and non-coding regions of
Human gene NOC2L.

shown in Fig. 5, the consistency measure between the corre-
lation functions decays as the length increases. As a result
of our analysis, we note that the correlation results under the
two mappings are inconsistent in the long run. Furthermore,
any comparison between the analysis results obtained by re-
lying on these correlation functions becomes increasingly un-
reliable. Another interesting result can be observed in Fig. 5,
where the decay rate of the non-coding region is faster than the
coding region. This phenomenon could be attributed to the fact
that the coding regions can be viewed as more random than the
non-coding regions. Nevertheless, the main conclusion that we
draw our attention to is that the consistency of the correlation be-
tween non-equivalent mappings decays as the sequence length
increases for both coding and non-coding regions.

We calculate the Fourier transform as defined in (11)
on Human gene AD169 sequence. The first mapping is
chosen as before, which maps the to the
standard basis of , respectively. Then we use second

Fig. 6. Fourier transform using three mapping methods.

mapping strategy, which maps to to
to

and to
. The third strategy maps to

to to
and to .

We have normalized the mappings so that it will not change
the energy of the result. The second mapping is not obtained
by rotating the first mapping. While the third mapping is
obtained by rotating the first mapping. In Fig. 3, we show the
weak equivalence metrics for Fourier analysis results using
these three different mappings. The consistency between
results using the first and second mapping becomes less and
less. While the results using the first and third mapping are
completely consistent. In Fig. 6, we show the analysis result
of the three mappings. As we showed before, the results
using the first and third mapping are exactly same, since
rotation is a strongly equivalent transformation. We can find
many differences between the results using the first and
second mapping, especially at the peaks. We also calculate
the correlation coefficient between them, which is 0.82.
The peak here means the repeat pattern of some periodic
sequences, however, since we have shown that the mapping is
not equivalent here, it makes no reason to debate on possible
conflicting analysis results for this gene sequence.

In all of the experiments conducted we observe that rotation
serves as the unique equivalent transformation for the correla-
tion function. Rotation also provides a strongly equivalent trans-
formation for Fourier and spectrum analysis. Mappings which
are not equivalent lead to inconsistent results as the sequence
length increases. However, we must point out that the oppo-
site may not be true: specifically, for a fixed-length sequence, the
consistency between mappings does not necessarily decay as the
difference between mappings increases, measured in the sense
of rotation equivalence, i.e., the similarity between the first map-
ping and any mapping obtained by rotating the second mapping.

V. CONCLUSION

In this paper, we presented a novel framework for analysis
of the equivalence of distinct numerical mappings of symbolic
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sequences undergoing a transformation by an operator. We
introduced a strong equivalence property that demands perfect
correlation between the transformations of distinct numerical
representations. We also characterized the weak equivalence
property which requires the preservation of the extrema in the
transformation of the numerical representations. We studied
the mapping equivalence theory for general operators by using
Taylor’s approximation. Moreover, we focused on first- and
second-order operators such as the correlation function and
Fourier transform. Furthermore, we derived the largest class
of equivalent mappings which lead to consistent results when
undergoing transformation by a class of operators. We demon-
strated that rotation plays an important role in characterization
of equivalence between distinct mappings. We subsequently
derived a class of operators which is equivalent under rotations.
We also introduced an abstract mapping model and extended
the notion of equivalence to a more general algebraic structure.
We presented simulations of the mathematical and statistical
properties of genomic sequences in order to demonstrate the
implications of the proposed mapping equivalence theory. Our
results suggest that one of the reasons for inconsistency in the
analysis of genomic data reported in the theoretical biology
literature as well as many other related areas can be attributed
to incompatibility of the numerical representation of symbolic
data.

APPENDIX

Proof of Theorem 3: Notice that with inner
product is a Hilbert space. So for any linear
bounded operator, , such that . So

. is strongly equivalent, therefore
for some and . Then we have

, i.e., is a trivial scaled identity transform. This
finishes the proof of the first claim. We claim if a non-trivial
operator whose Taylor’s expansion has no terms of order
higher than or equal to three has a non-trivial linear strongly
equivalent transformation, then it must only have the second
order term and the constant term. We can always scale or add
constant for the transformation to get a strongly equivalent
result after transformation. So without loss of generality, we
assume the result after the transformation is exactly the same
as the previous one, i.e., If and

, then we have

(34)

this equality holds for any . Therefore, we have
. is a rotation, i.e.,

(35)

Since , we have

(36)

Because , therefore is
normal, is unitarily diagonalizable [32]. is also normal.
Therefore, unitary, such that , where is
a diagonal matrix. Since is real orthogonal, the eigenvalues

of are on the unit sphere . Without loss of generality, we
assume has two eigenvalues, 1 and . Let the algebraic mul-
tiplicity of 1 be , then the algebraic multiplicity of is .
So we have

(37)

Let . From (36),
we have . Therefore, we
have

(38)

Let . We have . By using
the Jordan canonical form [33, Ch. VIII], we have that all
which commutes with must have the form as follows:

...
...

...
...

. . .
. . .

...
...

(39)

Every non-zero submatrix in is an arbitrary upper trian-
gular submatrix which has identical diagonal entries. All sub-
matrices and have size , all and have size

. Thus, all satisfies (36) are of the form
. However, since the is analytic, the

Hessian must be symmetric. Therefore, all the submatrices of
and have the form and and have also

the form . Notice that this is for a given rotation. Since (36)
holds for any given rotation, we have that

(40)

The rotation is arbitrary, (37) should hold for any .
Claim that the principal matrice in must satisfy

(41)

(42)

where and . Because we
know that

(43)

but if , then this implies
, where (37) for is

of the form

(44)

Since we know is not empty, we get a contradiction here.
Therefore, (41) and (42) hold. If we choose , we have

, where for , (41) and (42) hold. It’s straightforward
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to check that such is commutable with . Therefore,
. Finally we show that must have the form as in

(10). If we expand the operator at any other point , the only
second order term is . Repeat the previous
argument, we will have (10).
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