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Abstract— A generalization of Bregman divergence is devel-
oped and utilized to unify vector Poisson and Gaussian chan-
nel models, from the perspective of the gradient of mutual
information. The gradient is with respect to the measurement
matrix in a compressive-sensing setting, and mutual information
is considered for signal recovery and classification. Existing
gradient-of-mutual-information results for scalar Poisson models
are recovered as special cases, as are known results for the vector
Gaussian model. The Bregman-divergence generalization yields
a Bregman matrix, and this matrix induces numerous matrix-
valued metrics. The metrics associated with the Bregman matrix
are detailed, as are its other properties. The Bregman matrix
is also utilized to connect the relative entropy and mismatched
minimum mean squared error. Two applications are considered:
1) compressive sensing with a Poisson measurement model and
2) compressive topic modeling for analysis of a document corpora
(word-count data). In both of these settings, we use the developed
theory to optimize the compressive measurement matrix, for
signal recovery and classification.

Index Terms— Vector Poisson channels, vector Gaussian
channels, gradient of mutual information, Bregman divergence,
Bregman matrix, minimum mean squared error (MMSE).

I. INTRODUCTION

HERE is increasing interest in exploring connections

between various quantities in information theory and
estimation theory. Specifically, mutual information and condi-
tional mean estimation have been discovered to possess close
interrelationships. Guo, Shamai and Verdu [1] have expressed
the derivative of mutual information in a scalar Gaussian
channel via the (nonlinear) minimum mean-squared error
(MMSE). The connections have also been extended from the
scalar Gaussian to the scalar Poisson channel model, the latter
utilized to model optical communication systems [2]. Palomar
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and Verdd [3] have expressed the gradient of mutual infor-
mation in a vector Gaussian channel in terms of the MMSE
matrix. It has also been found that the relative entropy can
be represented in terms of the mismatched MMSE estimates
[4], [5]. Recently, parallel results for scalar binomial and
negative binomial channels have been established [6], [7].
Inspired by Kabanov’s result [8], [9], it has been demonstrated
that for certain channels, exploring the gradient of mutual
information can be more tractable than evaluating the mutual
information itself, while simultaneously being of practical
(e.g., gradient-descent) interest. Further, it has also been
shown that the derivative of mutual information with respect
to key system parameters also relates to the conditional mean
estimates in other channel settings beyond the Gaussian and
Poisson models [10].

This paper pursues this overarching theme for vector
Poisson channels, and provides a unification of the gradient
of mutual information for the vector Poisson and Gaussian
channel models. In [11] the author provides a general
review of developments for communication theory in Poisson
channels. The filtering and detection problems for Poisson
channels have been considered in [12] and [13]. The capacity
of a Poisson channel under various circumstances has been
investigated in [14]-[18].

One of the goals of this paper is to generalize the gradient
of mutual information from scalar to vector Poisson channel
models. This generalization is relevant not only theoretically,
but also from the practical perspective, in view of numerous
applications of the vector Poisson channel model in X-ray
[19] and document classification systems (based on word
counts) [20]. In those applications, the Poisson channel matrix
plays an essential role for dimensionality reduction, and it
can be manipulated such that the measured signal maxi-
mally conveys information about the underlying input signal.
Mutual information is often employed as an information-loss
measure, and the gradient provides a means to optimize the
mutual information with respect to specific system parameters
(via gradient descent methods). The mutual information is
considered from the perspectives of both signal recovery and
classification (the latter associated with feature design [21]).

We also encapsulate under a unified framework the gradient
of mutual information results for scalar Gaussian channels,
scalar Poisson channel and their vector counterparts. This
encapsulation is inspired by recent results that express the
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derivative of mutual information in scalar Poisson channels as
the average value of the Bregman divergence associated with a
particular function, between the input and the conditional mean
estimate of the input [22]. By constructing a generalization
of the classical Bregman divergence, we extend these results
from the scalar to the vector case. This generalization yields
a Bregman matrix, that appears to be new to the best of
our knowledge. The gradients of mutual information for the
vector Poisson model and the vector Gaussian model, as well
as the scalar counterparts, are then also expressed — akin to
[22] — in terms of the average value of the Bregman matrix
associated with a particular (vector) function; this loss function
is between the input vector and the conditional mean estimate
of the input vector.

We also study various properties of the Bregman matrix.
Specifically, the properties of the matrix are shown to mimic
those of the classical Bregman divergence, which include
non-negativity, linearity, convexity, duality and optimality.
Equipped with these properties, various results relying on
the classical Bregman divergence may be extended to the
multi-dimensional case. Additionally, it has been shown that
re-expressing results via a Bregman divergence can often
lead to enhancements to the speed of various optimization
algorithms [23].

We demonstrate applications of our theoretical results in
the context of Poisson compressive sensing, and compres-
sive document classification (compressive “topic modeling”).
In the former problem, the proposed results are utilized to
design the sensing matrix, such that the compressive mea-
surement maximally preserves the information contained in
the source. Offline design of the compressive measurement
matrix is considered, as well as sequential online design.
In the document-modeling problem, the vector Poisson chan-
nel model is employed as a dimensionality-reduction method-
ology (i.e., feature design) on document topics, and document
classification is performed directly on the compressive data
(this simplifies the clustering analysis, by easing computational
requirements). In this context, rather than characterizing docu-
ments in terms of counts of single words, the proposed theory
is used to characterize documents in terms of counts of groups
of words (i.e., we perform learning of key words). Compared
to randomly selecting the sensing matrix [24], the proposed
method is shown to yield superior performance.

The remainder of the paper is organized as follows.
Section II provides the definition of the vector Poisson chan-
nel, and reviews its vector Gaussian counterpart. We present
gradients of mutual information in Section III, in the context of
both signal recovery and classification. In Section IV we intro-
duce the Bregman matrix, and in Section V we use this matrix
to unify gradient-of-mutual-information results for Gaussian
and Poisson channels; properties of the Bregman matrix are
also investigated. In Section VI we present two examples
as verifications and applications of the proposed theoretical
results. Concluding remarks are provided in Section VII.

Notation: Upper case letters denote random variables.
Instantiations of the random variables are denoted by lower
case letters. We use — except for the scaling matrix and
the scaling factor — identical notation for the scalar Poisson
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channel and the vector Poisson channel. The context defines
whether we are dealing with scalar or vector quantities.
Px denotes the probability measure induced by X, and px (x)
denotes the probability density function of X in case X
admits one. The superscript (-)7 denotes the matrix transpose.
®;; and X; denote the ij-th entry of a matrix ® and i-th
entry of a vector X, respectively. X{ denotes the collection
of all but i-th entries of vector X, ie., X{ = U;4{X;}.
Tr(-) denotes the matrix trace. Pois(X; z) denotes a standard
Poisson distribution with parameter z for random variable X.
Product sign x is explicitly expressed only if the equation does
not fit in one line, or it is needed to clearly mark a separation
between two terms. We use the symbol E[: |- ] to denote the
conditional expectation of the first argument conditioned on
the second argument. (-, -) is defined as the canonical inner
product in R*, ie., (x,y) =xTy for x,y € Rk,

II. VECTOR POISSON & GAUSSIAN CHANNELS

A. Vector Poisson Channel

The vector Poisson channel model is defined as
m
Pois(Y: ®X + 1) = Pyix (Y|X) = [ | Prx (¥i1X)

i=1

= HPois Yi; (DX); + 4i)

i=1

(1

where the random vector X = (X1,X2,...,X,) € R}
represents the channel input, the random vector ¥ =
(Y1,Y2,...,Y,) € Z7 represents the channel output, the
matrix ® € R'™" represents a linear transformation whose
role is to entangle the different inputs, and the vector 1 =
(41,42, ..., 4m) € R} represents the dark current.

The vector Poisson channel model associated with arbitrary
m and n is a generalization of the standard scalar Poisson
model associated with m = n = 1, as given by [2], [22]:

Py x(Y|X) = Pois(Y; ¢ X + 1) 2)

where the scalar random variables X € Ry and Y € Z4 are
associated with the input and output of the scalar channel,
respectively, ¢ € Ry is a scaling factor, and 1 € Ry is the
dark current.

The goal is to design @ with the objective of maximizing
the mutual information between X and Y. Toward that end, we
consider the gradient of mutual information with respect to ®:

Vol (X;Y) =[Vol(X;Y);] A3)

where VoI (X;Y);; represents the (i, j)-th entry of the
matrix VoI (X;Y). As a parallel result to the scalar case
presented in [2], we also consider the gradient with respect
to the vector dark current

ViI(X;Y) =[ViI(X; Y)il “)

where V,;I(X;Y); represents the i-th entry of the vector
Vi I(X;Y).
It may occur that the distribution of the signal X is consti-
tuted by a mixture of components, i.e.,
L
Px(X) = > ziPxjc=i(X|C =),

i=1

)
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where 7 is a probability mass function supported on C €
{1,2,..., L}. This is the setting of interest for L-class clas-
sification problems. There may be more interest in recovering
C than in recovering X, and in that setting one is interested
in the mutual information between the class label C and the
output Y. For that case we seek

Vol (C;Y) =[Vol(C: Y);]. ©)

The mutual information 7(X;Y) is termed the mutual infor-
mation for signal recovery, while 7(C; Y) is called the mutual
information for classification. The choice of mutual informa-
tion as the metric is motivated by theoretical properties of
mutual information, specifically that the MMSE and Bayesian
classification error can be bounded via the mutual informa-
tionx [25]-[27].

B. Vector Gaussian Channel

Below we will develop a theory specifically for the gradient
of mutual information for vector Poisson signal models, and
make connections to existing results for the special case of a
scalar Poisson model. In addition, we will unify the vector
Poisson and vector Gaussian channel models under a new
theory, employing a new Bregman matrix. We therefore briefly
review the Gaussian channel and its various gradient results.

The vector Gaussian channel model is given by:

YIX ~N(@X, A7, 7

where N'(-,-) denotes the multivariate Gaussian distribu-
tion with corresponding mean vector and covariance matrix,
X € R” represents the vector-valued channel input, ¥ €
R™ represents the vector-valued channel output, ® € R"*"
represents the channel matrix, and A~ is a covariance matrix
associated with the zero-mean Gaussian noise. Note that in
both the vector Poisson and vector Gaussian models ®X is
the mean observation; the Gaussian model has the additional
parameter of the covariance matrix A~! (for the scalar Poisson
case the mean and variance are equal). In the Gaussian case
X and ® can have both positive and negative components,
whereas in the Poisson case both are non-negative.

It has been established that the gradient of mutual informa-
tion between the input and the output of the vector Gaussian
channel model in (7), with respect to the channel matrix, obeys
the relationship [3]:

Vol(X;Y) = ADE, (8)

where
E=E[(X - EX|)(X — EX|Y))] ©)

denotes the MMSE matrix.

The gradient of mutual information between the class label
and the output for the vector Gaussian channel, with respect
to the channel matrix, is [21]

Vol(C;Y) = ADE, (10)

WNhere
E:IE[(E(X|Y, C) —EXIV)EX]|Y,C) — E(X|Y))7] (11)

denotes the equivalent MMSE matrix.
The above gradient results for the Gaussian channel are
valid for any P(X) consistent with regularity conditions [3].
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III. GRADIENT OF MUTUAL INFORMATION FOR
VECTOR POISSON CHANNELS

A. Gradient of Mutual Information for Signal Recovery

We now present the gradient of mutual information with
respect to the measurement matrix @ and with respect to
the dark current 1 for vector Poisson channel models. In
order to take full generality of the input distribution into
consideration, we utilize the Radon-Nikodym derivatives to
represent the probability measures of interests. Consider
random variables X € R” and Y € R™. Let f)‘?l y be the
Radon-Nikodym derivative of probability measure P5| y Wwith
respect to an arbitrary measure Qy, provided that P)(fl x i
absolutely continuous with respect to Qy, i.e., P}‘?‘X < QOy.
6 € R is a parameter. f)e is the Radon-Nikodym derivative
of the probability measure P)e with respect to Qy provided
that P}‘? <« Qy. Note that in the continuous or discrete case,
f}‘? x and f)‘? are simply probability density or mass functions
with Qy chosen to be the Lebesgue measure or the counting
measure, respectively. We note that similar notation is also
used for the signal classification case, except that we may
also need to condition both on X and C. Some results of
the paper require the assumption of the regularity conditions
(RC), which are listed in Appendix A. We will assume all
four regularity conditions RC1-RC4 whenever necessary in
the proof and the statement of the results. Recall [28] that for
a function f(x,0) : R” x R — R with a Lebesgue measure u
on R", we have %ff(x,@)d,u(x) = f%f(x,@)d,u(x), if
|%f(x,6’)| < g(x), Vx, 0, where g € L'(u). Hence, in light
of this criterion, it is straightforward to verify that the RC are
valid for many common distributions of X.

Theorem 1. Consider the vector Poisson channel model
in (1). The gradient of mutual information between the input
and output of the channel, with respect to the matrix @, is
given by:

[chI(X; Y),‘j] = [E [Xj log((®X); + /1,‘)]
—E[E[X,|Y]log E[(®X); + 4;|Y]]] (12)
(PX)i + 4i

:E[ijg(EKQXh+lﬂﬂ)}’ (1)

and with respect to the dark current is given by:

[ViI(X:Y)i] = [Ellog((®X); + 4;)]

~E[log E[(®X); + 4 [YT].  (14)

irrespective of the input distribution Px(X), provided that the
regularity conditions in Appendix A hold.

Proof: See Appendices. g

It is clear that Theorem 1 represents a multi-dimensional
generalization of Theorems 1 and 2 in [2]. The scalar result
follows immediately from the vector counterpart by taking
m=n=1.

Corollary 1. Consider the scalar Poisson channel model
in (2). The derivative of mutual information between the input
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and output of the channel with respect to ¢ is given by:

iI(X; Y) = E[Xlog((¢pX) + V)]

o9
—E[E[X|Y]logE[#X + AY]] (15)
_ PX + A
_E|:X10g (7IE[¢X+/1IY])i|’ (16)
and with respect to the dark current is given by:
Z1(X: ¥) = Ellog@X + )]
—EllogE[¢X + A|Y]]. a7

irrespective of the input distribution Px(X), provided that the
regularity conditions in Appendix A hold.

It is also of interest to note that the gradient of mutual
information for vector Poisson channels appears to admit an
interpretation akin to that of the gradient of mutual information
for vector Gaussian channels in (8) and (9) (see also [3]).
In particular, both gradient results can be expressed in terms
of the average of a multi-dimensional measure of the error
between the input vector and the conditional mean estimate
of the input vector under appropriate loss functions. This
interpretation can be made precise — as well as unified — by
constructing a generalized notion of Bregman divergence that
encapsulates the classical one; the new form is a Bregman
matrix. We consider this in Sections IV and V.

B. Gradient of Mutual Information for Classification

Theorem 2. Consider the vector Poisson channel model in
(1) and signal model in (5). The gradient with respect to ©
of the mutual information between the class label and output
of the channel is

[VoI(C;Y)i] zE[IE[X J1Y, Cllog HL(@X)i + 4T, C]},

E[(®X); + 4i|Y]

(18)
and with respect to the dark current is given by
E[(®X); + 4, C]]
V,I(C;Y)):, =E|lo . 19
(VAI(C: V), [ e wrox sy |- 19

irrespective of the input distribution Px|c(X|C), provided that
the regularity conditions in Appendix A hold.
Proof: See Appendices. (]

IV. GENERALIZATION OF BREGMAN DIVERGENCE:
THE BREGMAN MATRIX

A. Preliminaries

The classical Bregman divergence was originally con-
structed to determine common points of convex sets [29].
It was discovered later that the Bregman divergence induces
numerous well-known metrics and has a bijection to the
exponential family [30].

Definition 1 (Classical Bregman Divergence [29]). Let
F : Q — R4 be a continuously-differentiable real-valued
and strictly convex function defined on a closed convex set
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Q C RK. The Bregman divergence between x,y € Q is
defined as

Df(x,y):=F(x)—F(y)—(VF(),x—y). (20

Note that different choices of the function F induce different
metrics. For example, Euclidean distance, Kullback-Leibler
divergence, Mahalanobis distance and many other widely-
used distances are specializations of the Bregman divergence,
associated with different choices of the function F [30].

There exist several generalizations of the classical Bregman
divergence, including the extension to functional spaces [31]
and a sub-modular extension [32]. However, such generaliza-
tions aim to extend the domain rather than the range of the
Bregman divergence. This renders such generalizations unsuit-
able to problems where the “error” term is multi-dimensional
rather than uni-dimensional, e.g., the MMSE matrix in (9).

We now construct a generalization that extends the range of
a Bregman divergence from scalar to matrix spaces (viewed
as multi-dimensional vector spaces), to address the issue. We
refer to this as the Bregman matrix. We start by reviewing
several notions that are useful for the definition of the Bregman
matrix.

Definition 2 (Generalized Inequality [33]). Let F : Q —
R™*™ be a continuously-differentiable function, where Q C R!
is a convex subset. Let K C R™" be a proper cone, i.e.,
K is convex, closed, with non-empty interior and pointed. We
define a partial ordering <g on R™*" as follows. Vx,y € K,
we have

xX2ky<—=y—xek,
X <g y <=y —x €int(K),

(21
(22)
where int(-) denotes the interior of the set. We write x >k y

and x =g yif y <x x and y <k x, respectively.
We define F to be K-convex if and only if:

FOx+(1—-0)y) =k 0F(x)+(1-0)F(y)  (23)
for Vx,y € Q and 6 € [0, 1].
We define F to be strictly K-convex if and only if:
FlOx+ (1 —-0)y) <k 0F(x)+ (1 —0)F(y) (24)

for Vx,y € Q with x # y and 6 € (0, 1).

Definition 3 (Fréchet Derivative [28]). Let V and Z be
Banach spaces with norms ||-||v and ||-| z, respectively, and let
U CV beopen F:U — Z is called Fréchet differentiable
at x € U if there exists a bounded linear operator DF (x)(-) :
V — Z such that

I F(x 4+h)— F(x) = DF(x)(h)llz
IAllv

DF (x)(-) is called the Fréchet derivative of F at x.

Note that the Fréchet derivative corresponds to the usual
derivative of matrix calculus for finite dimensional vector
spaces. However, by employing the Fréchet derivative, it
is also possible to make extensions from finite to infinite
dimensional spaces, such as L? spaces.

=0. (25)

I2lly —0
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B. Definition, Interpretation and Properties

We are now in a position to offer a definition of the Bregman
matrix.

Definition 4. Let K C R™*" be a proper cone and Q be
an open convex subset in a Banach space W. F : Q —
R™*" is a Fréchet-differentiable strictly K-convex function.
The Bregman matrix Dp(x, y) associated with the function F
between x,y € Q is defined as follows:

Dr(x,y):=F(x)— F(y) = DF(y)(x —y),

where DF (y)(-) is the Fréchet derivative of F at y.

This notion of a Bregman matrix is able to incorporate
various previous extensions depending on the choices of the
proper cone K and the Banach space W. For example, if we
choose K to be the first quadrant (all coordinates are non-
negative), we have the entry-wise convexity extension. In this
case, the Bregman matrix is essentially equivalent to a matrix-
valued function with each entry being a classical Bregman
divergence and the Fréchet derivative becomes the ordinary
Jacobian. If we choose K to be the space of positive-definite
bounded linear operators, we have the positive definiteness
extension. By choosing W to be an LP? space, then the
definition is similar to that in [31]. If we choose W to be
the space of real matrices and K be the collection of positive
real numbers, it generalizes the results in [34].

Rather than being viewed as a simple loss function, the
Bregman matrix admits an interesting geometric interpreta-
tion since it can be understood as a matrix-valued pseudo
Riemannian metric (or a tensor metric) [35]. To see this, let
us consider two points z € Q and z + dz € Q with ||dz||
being close to 0. Consider the first-order functional Taylor’s
expansion for F(x) at z

(26)

F() = F@Q)+ DFE( —2) + 3D FQ)(x —2)]

(x—2)+ R, (x), 27)

where R, (x) is the residue term with R, (x) = o(]|x —z]||?) and
D?*F : Q — L(Q, L(Q, R™*")) is the second-order Fréchet
derivative [36] which corresponds to the Fréchet derivative of
DF, and L(-,-) denotes the collection of all bounded linear
operators from the first argument space to the second argument
space. When Q is in a finite dimension vector space and m =
n=1, D?F is the ordinary Hessian matrix.

Let us now calculate the Bregman matrix between z and
z+dz,

Dr(z,2+d2)=F(2)—F(z+dz)— DF(z+dz)(z—z—dz)
(28)

= F() ~ F() - DFQ)@2) ~ 3 [D*F()@))d2)
+ DF(2)(dz) + [D*F(2)(d2)1(dz) + o(||dz|?)
~ %[DzF(Z)(dz)](dZ),

(29)
(30)

where (29) uses the Taylor’s expansion of F and DF. This
formula indicates that the Bregman matrix can be infinitesi-
mally viewed as a matrix-valued pseudo metric whose metric
matrix is imposed by D*F. If m = n = 1 and Q is a finite
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dimensional vector space, then D?F becomes the Hessian
matrix and we have

Dr(z,z+dz) ~ %[DzF(Z)(dZ)](dZ) €1V
_ %(dz)TDZF(z)(dz), (32)

where D?F(z) serves as the Riemannian metric. This inter-
pretation for classical Bregman divergence has also been
recognized in [37]. Therefore, the Bregman matrix Dp (-, )
can be viewed locally as a matrix-valued pseudo Riemannian
metric function whose geometry information is induced solely
by F [38].

The Bregman matrix also inherits various properties akin to
the properties of the classical Bregman divergence, that has
led to its wide utilization in optimization and computer vision
problems [23], [39].

Theorem 3. Let K C R™*" be a proper cone and Q be
an open convex subset in a Banach space W. F : Q —
R™ M and G : Q — R™*" are Fréchet-differentiable strictly
K-convex functions. Then the Bregman matrix Dp(x,y)
between x,y € Q associated with the function F exhibits the
properties:

1) Dr(x,y) =k 0, where 0 is the zero matrix.

2) D¢ Fte,6(x,y) = c1Dp(x, y) +c2Dg(x, y), where the

constants c1, ¢y > 0.

3) Dr(-,y) is K-convex for any y € Q.

Proof: See Appendices. O

The Bregman matrix also exhibits a duality property similar
to the duality property of the classical Bregman divergence
when we choose some proper cone K, that may be useful for
many optimization problems [39], [40].

Theorem 4. Let F : Q — R™ " be a strictly K-convex
function, where Q C R¥ is a convex subset. Choose K to be the
first quadrant space R™™" (space formed by matrices with all
entries positive). Let (F*,x*, y*) be the Legendre transform
of (F,x,y). Then, we have that:

DF(X,}’)ZDF*(}’*»X*) (33)
Proof: See Appendices. O
Via this theorem, it is possible to simplify the calculation of
the Bregman divergence in scenarios where the dual form is
easier to calculate than the original form. Mirror-descent meth-
ods, which have been shown to be computationally efficient
for many optimization problems [39], [41], leverage this idea.
The Bregman matrix also exhibits another property akin to
that of the classical Bregman divergence. In particular, it has
been shown that for a metric that can be expressed in terms
of the classical Bregman divergence, the optimal error relates
to the conditional mean estimator of the input [42]. Similarly,
it can also be shown that for a metric that can be expressed
in terms of a Bregman matrix, the optimal error also relates
to the conditional mean estimator of the input. However, this
generalization from the scalar to the vector case requires the
partial order interpretation of the minimization.
Theorem 5. Consider a probability space (S, s, i), where
s is the o-algebra of S and p is a probability measure on s.
Let F : Q — R™" pe strictly K-convex as before and Q is
a convex subset in a Banach space W. Let X : § — Q be a
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random variable with E[|| X 2] < oo and E[|| F(X)|2] < oc.
Let s1 C s be a sub o-algebra. Then, for any s1-measurable
random variable Y, we have that:

arg myin Ex,y [Dr(X,Y)]=E[X]|s1], (34)

where the minimization is interpreted in the partial order-
ing sense, i.e., if Y’ such that Ex y/[Dr(X,Y)] =k
E[Dp(X,E[X|s1])], then Y = E[X]|s;].

Proof: See Appendices. O

Various properties of the Bregman matrix enable the pos-
sibility to extend previous methods based on the classical
Bregman divergence to multi-dimensional cases. Here we
illustrate an application of the Bregman matrix in mirror-
descent methods. We first briefly review the motivation of
mirror-descent methods. The regularized gradient method can
be viewed as an approximation of a given function f(x) at x;
by a quadratic function f;(x) as follows.

1
fz(X)1=f(Xz)+(fo(Xz),x—Xz)>+§(x—Xz)T(x—Xz), 35)

where the last term is the regularization. The general idea of
mirror-descent methods is to replace that term by the Bregman
divergence. For example, given a Bregman matrix Dp(x, y),
we can derive the following mirror descent function:

fi(x) == fx) + (Vaf(xp), x — xp))
+TI'((DF (-xa -xf))(DF (-xa -xf)T)’

where the concrete choice of the associated function F
depends on the nature of specific problems. It often occurs that
the Bregman matrix is difficult to calculate directly in practice.
Hence, rather than calculating the Bregman matrix itself, one
may work directly on its dual form by Theorem 4, provided
that it is easier to calculate the dual form. This idea for mirror-
descent methods has been shown to be very computationally
efficient and has been successfully implemented in many very
large-scale optimization problems [39], [41].

(36)

V. UNIFICATION: A BREGMAN MATRIX PERSPECTIVE

Using the Bregman matrix, the gradient of mutual informa-
tion for both vector Gaussian and Poisson channel models can
be formulated into a unified framework. The interpretation of
the gradient results for vector Poisson and vector Gaussian
channels, i.e., as the average of a multi-dimensional general-
ization of the error between the input vector and the condi-
tional mean estimate of the input vector, under appropriate loss
functions, together with the properties of the Bregman matrix,
pave the way to the unification of the various theorems.

Theorem 6. Assume that the distribution of the input X
satisfies the regularity conditions in Appendix A. The gradient
of mutual information with respect to ® for the vector Poisson

channel model in (1) can be represented as follows:
Vol(X;Y)=E[Dr(X,E[X|Y]], (37)

where DF (-, ) is a Bregman matrix associated with a strictly
K -convex function

F(x) :x(log(CDx—}—/l))T —[x,...,x]+11,...,1],
where 1 =[1,...,1].

(38)
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The gradient of mutual information with respect to @ for
the vector Gaussian channel model in (7) can be represented
as follows:

Vol (X;Y) =E[Dr(X,E[X|Y])], (39)

where Dp(-,-) is a Bregman matrix associated with a strictly
K -convex function

F(x) = AdxxT. (40)

Proof: See Appendices. O

Atar and Weissman [22] have also recognized that the
derivative of mutual information with respect to the scaling for
the scalar Poisson channel could also be represented in terms
of a (classical) Bregman divergence. Such a result, applicable
to the scalar Poisson channel as well as a result applicable to
the scalar Gaussian channel, can be seen to be corollaries to
Theorem 6; this is in view of the fact that the classical
Bregman divergence is a specialization of the generalized one.

Corollary 2. Assume that the distribution of input X satis-
fies the regularity conditions in Appendix A. The derivative of
mutual information with respect to the scaling factor for the
scalar Poisson channel model is given by:

%I(X; Y) =E[Dr(X,E[X|Y]], (41)
where F(x) = xlog(¢x + 1) —x + 1.

Proof: By Theorem 6, F(x) = x log(¢x + 1) —x+ 1. Hence
DF(x) = log(¢x + A). It is straightforward to verify that
E[Dr(X,E[X|Y])] induces the scalar gradient result. O

Corollary 3. Assume that the distribution of the input X
satisfies the regularity conditions in Appendix A. The deriva-
tive of mutual information with respect to the scaling factor
for the scalar Gaussian channel model is given by:

%I(X: Y) =E[Dr(X,E[XIYD]I, (42)
where F(x) = o 2¢x%. o2 is the variance of the noise.

Proof: By Theorem 6, F(x) = o 2¢x2. Equation (42)
follows from a simple calculation, and the result from [3] that
%1(}(; Y) = 0 2gE[(X — E(X|Y))2]. O

Similarly, the gradient of mutual information for classifica-
tion under the vector Poisson and Gaussian channels can be
incorporated into one framework, as the expected Bregman
matrix between two conditional estimates.

Theorem 7. Assume that the distribution of the input X
satisfies the regularity conditions in Appendix A. We also
assume the Gaussian channel model and Poisson channel
model, as in (1) and (7), respectively. Then the gradient of
mutual information for classification 1(C;Y), with respect
to ® for the vector Poisson channel, can be represented as

follows:
Vol(C;Y)=E[Dr(E[X]Y, C],E[X|Y]], (43)

where DF (-, ) is a Bregman matrix associated with a strictly
K -convex function

F(x) = x(log(®x + )T =[x, ..., x]+[1,...,1],
where 1 =11, ...,1].

(44)
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For the case of the vector Gaussian channel model, the
gradient of mutual information for classification I (C;Y), with
respect to ® can be represented as follows:

VoI (C;Y) =E[Dr(E[X|Y, CL, E[X|Y])], (45)

where the associated function F(x) is given by
F(x) = AdxxT. (46)
Proof: See Appendices. O

The Bregman matrix not only unifies various gradient
results, it also serves as an interconnection between the mis-
matched estimation and relative entropy. It is found [4] that the
relative entropy between two distributions can be calculated
as an integral of the difference between mismatched mean
square estimation errors for the Gaussian channel, and similar
result holds for the scalar Poisson channel [22], where the
relative entropy is represented as an integral of the difference
between two classical Bregman divergences. The result for the
vector Gaussian channel can also be represented in terms of
the Bregman matrix, which is summarized in the following
theorem.

Theorem 8. Let P and Q be two arbitrary distributions
for the random variable X € R". N ~ N(0, I) is a standard
multivariate Gaussian random variable with zero mean and
identity covariance matrix. Then,

1 o0
D(PIQ) = SEr| /0 [ Dr Ep[X|VTX + NI,
Eo[X|/7X 4+ ND]dy],

where the associated function F(x) = xxT. Ep(-) and E¢(-)
denote the expectations with the distribution of X being P
and Q respectively.

Proof: See Appendices. ([

As discussed in the previous section, the Bregman matrix
can be interpreted as a matrix-valued pseudo Riemannian
metric. From this perspective, we now present a result which
leverages the results in Theorem 6 and the Riemannian metric
interpretation of the Bregman matrix. Let us assume that the
family of feasible channel parameters @ forms a manifold M¢.
It follows from a classical argument via the implicit function
theorem [43] that the function graph {(®, I(X;Y))}loecm,
is also a manifold whose dimension agrees with M¢, and
we denote this mutual information manifold as M. We have
the following theorem where we assume that we have vec-
torized ®, Dp(X,E[X|Y]) and VoI(X;Y) from R™ " to
Rmnxl.

Theorem 9. Consider the mutual information manifold M
with Riemannian metric J for either Gaussian or Poisson
channel, where J is the identity matrix and the channel
parameter manifold Mg is equipped with Riemannian met-
ric g. There exists a Riemannian isometry between (Mg, g)
and (M, 7), if we choose matrix g to be the Riemannian
metric defined by g = diag{[IE[DF(X,E[XIY])]]Z}, where
[-1? denotes term-wise square of the argument vector and F is
selected accordingly for either Gaussian or Poisson channel
as in Theorem 6.

Proof: See Appendices. 0
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This theorem suggests that one may work directly with
(Mo, g) to investigate the properties of the mutual information
under a proper choice of g. Meanwhile, we point out here
that since the Riemannian geometry information is essentially
controlled by function F, F is supposed to vary at each
individual @ as a Riemannian metric.

VI. APPLICATIONS

We demonstrate numerical experiments on applications of
the gradient results to the projection design for Poisson
compressive sensing, on both synthetic and real datasets. One
key assumption for our approach is that the distribution of
input X is known. However, in practice, the distribution of
X may not be directly available. This issue can be generally
addressed in two different ways. The first approach is to
learn the distribution based on training datasets, provided it is
available. This can be readily carried out via the EM algorithm
or Bayesian inference. The other way is to adaptively design @
via a sequence of measurements which sequentially refines the
estimate to the input distribution. In the following subsections,
we present examples leveraging these two approaches.

A. Synthetic Data

We first apply the above theoretical results to synthetic
data. Assume the signal X € R’ has a log-normal mixture
distribution and that the system model is

Y ~ Pois(Y; ®X), X =exp(Z), Z|C ~N(Z; pie, Ze)s
L

C ~ D midr,
k=1

where X; = exp(Z;) with X; and Z; denoting respectively
the ith components of X and Z, 7y > O, z,le e = 1,
and J; is a unit point measure concentrated at k. The ith
component of Y is drawn Y; ~ Pois[Y;; (®X);], where
(®X); denotes the ith component of the vector ®X. This
model may also be expressed Y|Z ~ Pois(Y; ® exp(Z)) with
Z ~ Z,le TN (Z; uy, Zi). Therefore, X is modeled as a
log-normal mixture model. In (47) we explicitly express the
draw of class label C, as it is needed when interested in
1(Y; O).

We first consider the signal recovery problem, in which we
wish to recover X based upon Y; in this case we seek the
projection matrix @ that maximizes 7 (X; Y). We also consider
the classification problem, for which we design ® to maximize
1(Y; C). As we mentioned before, the mutual information in
those cases does not possess an explicit formula except under
very few special input distributions. In order to optimize the
mutual information, we must resort to the gradient descent
method and it is performed on ® in both cases, with an
added total-energy constraint, on Tr(®7 ®). Theorem 1 is
employed to express gradients for maximization of 1(X;Y),
while Theorem 2 is employed when maximizing /(Y; C).
Explicit formulas for optimizing the mutual information are
available provided that the posterior density is known. As we
will present later, the posterior density can be approximated
by the Laplace method.

(47)
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It is assumed that a single random vector X € Ri is drawn,
and Y; ~ Pois(Y;; ¢/ X), where ¢/ is a vector defined by the
ith row of ®@. In “offline” design of @, all rows of @ are
designed at once, and p(X) is defined by the model (47).
In “online” design, each ¢, ¢2, ... is constituted sequentially,
with p(X|{Y;};=1,...;) employed when computing the mutual
information for specification of ¢; 1. In the below experi-
ments, we consider both offline and online design of @, with
the expectation that online design will be better, since it adapts
® to the signal X under test (with the added computational
cost of sequential design).

Each of the Gaussian mixture components N (Z; ux, i)
may be viewed as a separate model for Z, with a total of
L such models. The probabilities {7y} represent our prior
belief about which model is responsible for any particular data
sample. Since the prior for Z associated with each model is
Gaussian, it is reasonable to also approximate the posterior of
the model for Z as being Gaussian as well (this is done for
each of the L models, and the cumulative model is a GMM).
Considering each of the L models separately, the mean of the
approximate posterior Gaussian is taken as the mode of the
true posterior (maximum a posterior, or MAP, solution), and
the covariance is taken as the Hessian of the model parameters
about the mode. This is termed the Laplace approximation
[44], and this is implemented L times, once for each of the
models (mixture components).

After acquiring {Y;};1,....;, our posterior with respect to X
considers all L models (model averaging), and is represented

L
XY} j=1.) =D pkl{¥;}j=1.0) p(X Ik, {¥}}j=1.0)

k=1
L
=> pkl{Y;}j=1.)p(Z=log X|k, {¥;};=1.),
k=1
(48)
where p(Z = logX]k,{Y;};=1,.,;) is manifested via
the aforementioned Laplace approximation, denoted

N(Z; i, Zx); fix and X are respectively the Laplace-
updated Gaussian mean and covariance matrix for mixture

component (model) k. The prior belief about the probability
of model k is p(k) = mx, and the posterior is

dZp({Y;}1Z)p(Zlk
pllly) = ™z I;(({{y]-}}l) )p(ZIK)
J

_ m [,dZ Pois({Y;); ®eP)N(Z; fu, )
> k1 T [, dZ' Pois({Y;}: ®eZWN(Z'; jir, E)

(49)

where {Y;} is here meant to concisely represent {Y;};—1, ;.
The integration with respect to Z in (49) is readily performed
numerically with Monte Carlo integration.

The expressions (48)-(49) are used for online design, and
they are also used to express our estimate of X based on a
set of measurements (regardless of how @ was designed). In
the classification case, (49) is used to provide our estimate of
which class C was responsible for the observed data Y.

Numerous examples of this type have been successfully
tested with the analysis framework, one of which we elucidate
here. We consider L = 3 mixture components, with 71 = 0.5,
7y = 0.3 and 73 = 0.2. It is assumed that n = 100, and
the respective n-dimensional means are u; = (—1,...,—1),
u2=1(0,...,0),and u3 = (1, ..., 1). The covariances are set
as 1 = Ly = X3 = AAT 4621, where I is the n x n identity
matrix, o2 is a small variance that allows the covariance to be
full rank, and A € R'99%30_ Each entry of A was drawn i.i.d.
from normal distribution N (0, 0.04). We employ 500 Monte
Carlo samples to calculate the gradient and 500 iterations
for the gradient descent. In terms of convergence speed, we
find that our algorithm converges well after a few hundreds
iterations.

In Fig. 1, we illustrate the means and variances of the frac-
tional error and classification accuracy for the three methods
with increasing number of projections, with results based on
100 independent simulations. The fractional error is defined

IX-X13
XIS .
in the case of random design, we draw each entry @;; ~
Gamma(0.1,0.1) to maintain the positivity and normalize
® such that Tr(®®7) = 1. From Fig. 1 note that the

designed @ perform significantly better than random design,

. The energy constraint was Tr(®®7) = 1, and
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for both signal recovery and classification. Moreover, the
online designed ® performs better than its offline-designed
counterpart, although the difference is not substantial.

B. Document Classification

In this example W e Z’ represents counts of the occur-
rences of each of n words in a document. It is assumed
that there are L classes of documents, and 7; represents the
a priori probability of document class k. Class k is charac-
terized by an n-dimensional probability vector over words,
Pk, where Zﬁ):l Piw = 1, Prw = 0, and Py, represents the
probability of word w in document class k. The draw of words
for a given document in class k is assumed modeled W ~
Pois(W; X), where X = yf, with y € R;. Consequently,
the total number of words |W| associated with the document
is assumed drawn |W| ~ Pois(|W|; y ). Using a Poisson factor
model [45], one may infer a set {fi}x=1,c characteristic of
a corpus. We henceforth assume that the set of probability
vectors {fi}k=1,c is known (learned based on training data as
in [45]).

The number of words 7 in the dictionary D may be large.
Rather than counting the number of times each of the n words
are separately manifested, we may more efficiently count the
number of times words in subsets of D are manifested (each
subset of words acts like key words associated with a given
topic). Specifically, consider a compressive measurement for
a document as Y|X ~ Pois(Y; ®X), where ® € {0, 1}"*",
with m <« n. Let ¢lT € {0, 1}"* represent the ith row of @,
with ¥; the ith component of Y. Then Y;|X ~ Pois(Y;; ¢>l.TX)
is equal in distribution to Y; = Z?:1 @ijWj, where W;|X ~
Pois(W;; X ), and ¢;; € {0, 1} is the jth component of vec-
tor ¢;. Therefore, Y; represents the number of times words in
the set defined by the non-zero elements of ¢; are manifested
in the document; Y represents the number of times words are
manifested within m distinct sets, with the sets defined by the
non-zero elements in the rows of ®.

Note that we use a binary @ because the compressive
measurements may be manifested by simply summing the
number of words in the document associated with each of the
m subsets of words. Hence, these compressive measurements
may be constituted directly based on the observed count of
words in a given document. We may also theoretically allow
® e RY™, but we cannot usefully apply this result to
observed documents.

For matrix @ € {0, 1}, the overall compressive docu-
ment measurement is represented

Y ~Pois(Y; ®X), X = yp., y ~ Gamma(aog, bop),
L
C ~ Zn’kék
k=1

where it is assumed that {f}x=1,.,. are known. Computa-
tional methods like those discussed in [45] are used to infer
y and C based upon a compressive measurement Y. The
goal is to design @ with the goal of maximizing /(X;Y) or
I1(C;Y).

We use Theorems 1 and 2 to design a binary ®@. To do this,
instead of directly optimizing @, we put a logistic link on each

(50)
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value @;; = logit(M;;). We can state the gradient with respect
to @ as:

[VuMI(X;Y)ij] = [Vol(X;Y)ijl[Vm D] (€29)

To calculate the designed M, we first initialize the matrix
at random. We use Monte Carlo integration to estimate the
gradient and used a standard of 1000 gradient steps when the
matrix had clearly converged. The step size was set to be
1/10 of the maximum of the absolute value of Vy I(X;Y).
Finally, we threshold @ at 0.5 to get the final binary ®. We
employ 500 Monte Carlo samples to calculate the gradient and
500 iterations for the gradient descent. In this experiment, our
algorithm converges well after a few hundreds iterations.

To classify the documents, we use the maximum a posteriori
(MAP) estimate, with our predicted class

¢ = arg mj?lx plci = jlyi) (52)
. 7jp(yi)p(yilci, yi)
plei = jlyi) o ~ PP T — (53)
p(ilci, yi) ’
m
p(ilci, yi) = Gamma(ao + Y yij, bo + ||®de;|[1)  (54)
j=1

where y can be any positive real number.

We demonstrate designed projections for classification on
the Polarity dataset [46] and the 20 Newsgroups corpus.!
The Polarity dataset has n = 8828 unique words and two
possible classes (i.e., L = 2, corresponding to positive and
negative sentiment), and the Newsgroup data has n = 8052
unique words with L = 20 different newsgroups. When
learning the class-dependent {f1, ..., fr}, we placed the prior
Dir(0.1,...,0.1) for each S, and the components y; had a
prior Gamma(0.1, 0.1) [45]. To process and test the measure-
ment design, we split into 10 groups of 60% training and 40%
testing. We learn {f, ..., fr} on the training data, and use this
along with the prior on y to learn the measurement matrix via
gradient descent. Classification versus number of projections
for random projections and designed projections are shown in
Fig. 2. The random design was constituted by using a drawing
each entry in the binary matrix from a Bernoulli random
variable with p = .05. The results were robust to setting the
p in the Bernoulli random variable between .01 and .1, and
performance degraded outside that range. When we compare
to the random-orthogonal projection matrix, we enforce that
each row of the sensing matrix is orthogonal to all other
rows. To do this, we draw each column in the matrix ® from
a multinomial distribution with probability (%, ey %). This
gives that each column has exactly one non-zero entry, and
will give orthogonal factors. When considering non-negative
matrix factorization (NNMF) [47], a NNMF is performed on
the training count matrix by using the algorithm in [47].
(Performance of the heuristic NNMF projection matrices is
also dependent on the algorithm used. The NNMF algorithm
in [48] was also attempted, but the classification results were
dominated by that of [47].) After getting the principal non-
negative factors, we threshold the non-negative factors so

1 http://qwone.com/~jason/20Newsgroups/
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Error-bar plots of MAP classification accuracy with increasing number of projections. Random denotes a random binary matrix with 1% non-zero

values. Rand-Ortho denotes a random binary matrix restricted to an orthogonal matrix with one non-zero entry per column. NNMF denotes using non-negative
matrix factorization on the normalized counts to heuristically design the projections. Optimized denotes the design methods discussed in section VI-B.

(a) Results on the polarity dataset. (b) Results on the 20 Newsgroups corpus.

that 5% of the factors are non-zero to get a design matrix.
The results were robust to perturbations in the threshold value
to set between 1% and 10% of the values to be non-zero.
In Fig. 2(a), we show the results on the Polarity dataset. We
obtain nearly identical performance to the fully observed case
(no compression), after only m = 50 designed projections.
Note that the designed case dominates the performance of the
random cases and the heuristic design of non-negative matrix
factorization (NNMF). In Fig. 2(b), we show the results on the
20 Newsgroups dataset. The designed projections dominate the
random projections and have similar performance to the fully
observed count vectors with 150 projections. In this case, the
NNMF greatly outperformed the purely random methods, but
was once again significantly improved upon by the designed
case.

Note that in the examples considered, the topic labels
were given by the dataset, and our goal was classification.
Comparison to performance based on using all the words (non-
compressive measurements) is therefore the appropriate refer-
ence. In other applications one must learn the characteristics
of the topics based upon a corpus (i.e., one must learn which
topic labels are appropriate). For that one may use one of the
many types of topic models that have been developed in the
literature [49] and [50]. That was beyond the scope of this
study, and was unnecessary for the datasets considered for
demonstration of the proposed methods.

VII. CONCLUSION

The relationship between the mutual information and con-
ditional mean estimator for vector Poisson channels has been
examined. It has been shown that the gradients of mutual
information with respect to the scaling matrix and dark cur-
rent for vector Poisson channels can be formulated into a
relatively simple form. By revealing the gradient of mutual
information, it is possible to use gradient descent type opti-
mization algorithms to solve problems in application areas

associated with Poisson vector data (e.g., word counts in
documents). The results of this paper may be used for optimal
design of compressive measurement matrices for compressive
sensing with Poisson data models.

The Bregman matrix has been proposed to extend the range
of the classical Bregman divergence to the multi-dimensional
case. Several theoretical properties of the Bregman matrix
have been analyzed, such as non-negativity, linearity, convexity
and duality, which make it possible to extend many previous
algorithms based on the classical Bregman divergence. We
establish the connection between the Bregman matrix and the
gradient of mutual information for both Gaussian and Poisson
channels. The relative entropy and the mismatched MMSE can
also be connected in terms of the Bregman matrix.

APPENDIX
VIII. REGULARITY CONDITIONS

In this paper, we assume the following four regularity
conditions (RC) on the interchangeability of integration and
differentiation.

RCI1:
0 0
%EQY [f)€|x] =Eo, [%f)€|x:|, (55)
RC2:
0 0
%EPX [f%x] =Epy [@f;ﬂx} (56)
RC3:
ZBrvo, [ Hixtoe flix] = Ervor | 5 (Fxtoz i) |
50 “Pxoy | Jrix Y|X w0r | 75 (Jrix YX
(57)
RC4:

0 0
%EQY [fg\xlog f}?\x] =Eg, [% (fg\x log f}€|x)]~ (58)
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In addition, we always assume the technical condi-

dP
tion that [ Hlog 0> (% Y'X)’ddeQy:|

IE[‘XJ- log(E[¢; X + A;]Y] )‘ <00, Vi,].

< oo and

IX. PROOF OF THEOREM 1

We first establish the following Lemma which relates to the
results in [10].

Lemma 1. Consider random variables X € R" and Y €
R™. Let fY‘ x be the Radon-Nikodym derivative of the prob-
ability measure PY‘X with respect to arbitrary measures
Qy provided that P6|X < Qy. 8 € R is a parameter.
fY is the Radon-Nikodym derivative of probability measure
P‘9 with respect to Qy provided that P‘9 & Qy. Assuming
the regularity conditions RCI — RC4, we have

0
log fyx log leX
00 fY
Proof of Lemma 1. Choose an arbitrary measure Qy such that
P{y < Qy and P} < Q.

P
X1 = (59)

G G
S5 (X:¥) = S D(Pyxl0y) = D(PYIIQy)  (60)
8 dPy,, dP?
- [/mg de'x dQY'XdedPX
drl dPY
/1 g@@ dQy (61)
0 dPH
= |:/log T X 4Py dPy
dr dpPf
/log—dQ —dQ dQy|.  (62)

We will calculate the two terms in (62) separately.

Pl ldPH
Al

Y|X 0
a0y dPydeX:|

) dPYlX
:/[£(1 235, )dP{?XdPXi|

dPY|X Pl dPY|X
+/|:log o ﬁ( Ton Jaorarx|. )

where the equality follows from RC3. By Lemma 1 in [10],

we have
/ [% (log ddPQ‘Q:()dpgldeX] =0. (64)
Hence,
% [/ log ddPQY'X dPYlePX:|
G T
S ]
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The second term in (62) can be calculated as follows:
dPy 4Py | }

1 [ 10g

20 / 840y d0y

RC4 0 dP‘9 dP;,)
—/[ﬁ(l Q)@dQY}

+/ [l gﬂ—(d—})g)dgy] (67)
dQy a0 \ dQy
dpPd
- S5 )]
+/[1 gﬂ—(d—ﬁ)de] (68)
dQy o0 \ dQy

RC1 0 dPH dPH
dPy d 69
/ ) / [ 2500 a9( 0y | (69)
dPe 0 dP%X
+/[ deae( agy 7 )40
re2 [ dprf YIX
= log —— dPyx )d 71
/_o de(/ (dQY v Jdor |
— /_1 ary o (4P dPxdQ
= /|35, 56\ agy JOFreor
-1 dPY o log 4Py
- / °¢ 50,70 \"** Tor
where the second to the last equality follows from the assump-
tion together with the Fubini’s theorem. We denote the specific

regularity condition used on top of the corresponding equality
symbol. Plugging (66) and (73) back to (62), we have
dPfx o ( dpPy,
—1lo

:/[log doy o0\ % doy )dP”dPX}
df"9 0 dPy\x 9
_/[1 $doy a0 (10 dQy )dP”dPX
P dPy dPy /A0y
:/ log a0y lo

dPy/dQy
_E |:5 log fr(?\x o fYXj|
20 I

where the last equality follows from the definition of Radon-
Nikodym derivatives f7, and f7. O

Proof of Theorem 2. Let the parameter 0 = ®0;; i We first
< Qy and Py S & Qy

Let fy‘ and fy Y be the Radon-Nikodym derivatives of Py‘ X

(70)

(72)

)dPYleij|, (73)

0
—I1(X;Y
59 X Y)

(74)

dpPy, XdPX] (75)

(76)

choose a measure Qy such that PY
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@;; .
and P, ", respectively. By Lemma 1, we have

(I)H
oI(X;Y) G o, Frix(Y1X)
T%j =K @logfﬂx(ﬂX)xlogW 7)
(Y|X Y|X
_E 6(D fY\ )ngy| T (YIX) . 78
fy\ (Y|X) fy U(Y)

Notice that by the Poisson channel assumption, Y is supported
on Z%. If we choose the measure Qy to be the counting

measure, then we have fﬁ% = P;D‘;j( and f;p b= P;D v
Therefore, we have
0 Loy
@fy\x(ﬂx)
0
Pois(y; @x + 4) (79)
1 1 (ixtds
= (—,)’ixj(¢ix + )Vl em Gt
Yi:
1 . e
+— (gix + 20)” (—x»ewmﬂ)
Yi:
1 ,
< [ ] — @Bex + ax) ke Gt (80)
k£i Ok
1
——X x_i_i Vi _(¢IX+/L)( _1)
y J(¢l ) ¢lx+/1_
1
% H — (rx + ik))’ke*(d’kaF/lk) 81
i VK
#i
o Yi _ D;;
=X (r_x Yy 1) PY‘X(y|x), (82)
where ¢; is the i-th row of ®.
Therefore, we have
aI(X;Y Y; I (Y]X)
AXY) _g(x, (7’ —1) lo 7”" (83)
o0D;; i X + A yu (Y)

=24 (rrn

) (x f (L - 1) log Py (Y)). (85)
diX + A

We will calculate (84) and (85) separately. In the followmg
derivations, we will omit the superscript ®;; in P),| x(Y | X)

l)logPY| (Y|X)) (84)

and P;D Y(Y) for simplicity.
Term (84) may be expressed as

E[X (M%_l)zlog(y,(qﬁmﬂ ke @iX+i ))]

(86)
1
_ZE[ (@XH 1)1°gﬁ}

(87)
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E Yilog(p; X + A; 88
3 [ (@X - )kg(¢z +,)} (88)

_ZE[ (¢1X+/1 )(¢,~X+/1,-)}.

We claim that (89) equals zero; this term may be expressed
as

ZE[ (o 1) @x+ o]

(89)

) y
oulk [xj (m - 1) G X +2) Xﬂ (90)
i E[Y;| X
~SElx; (ﬁ—l) (¢,-X+A,-)} O
i L i i
i iX 4+ A
_ S e[x, (% - 1) GiX + A,-)} (©2)
T L i i
=0, (93)

where we use the fact that E[Y;|X]
A)IX] =i X + 4.
In turn, (84) may be expressed as

1
ZE[ (¢X % I)IOgm}
+ZE[ (¢ X7 1) Y log(¢i X +/1i)} . (94)
Combining the fact that E[Y;|X] = ¢; X + A;, E[Y?|X] =

(@i X + i) + (¢ X + )% and Pyjx (y1x) = [1; Preix Oxlx),
the latter term can be calculated as follows:

ZE[ (¢X % 1) Yklog(¢,‘X+/1,')i|
B Zk:/xj (¢ix + i

= E[Pois(Y;; ;i X +

1) vk log(¢ix 4 2;)d Pxd Py|x

95)
y?
= /xj (m - yz’)log(¢ix + Ai)d Pxd Py, x
3o (2 )
oy hix + A
x log(¢ix + ii)ddePy”dey”x (96)
(pix + 2)* + (Pix + 4i)
:/xj( Bix + A —dix A
dix + Ai )
1 ix + Ai)dPx + / ( —1
x log(¢ix )d Px ; S+ i Yk
x log(¢ix + ﬂ.i)dpxdpyk‘x 97)
=E[X;log(¢; X + 4;)] +0. (98)

We now establish the following technical Lemmas that will
be used later. We note that the following Lemmas generalize
the results in [10].
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Lemma 2.

1 Py(yi —1,5)
Py (y)

il ]
$iX + A Vi
Proof of Lemma 2. First observe that by the Poisson channel
assumption, we have

99)

1 1 Py, i — 1
- Y,|X(yl I-x) (100)
dix+4i  yi Pryx(yilx)
X 1 Py, i — 11X
[ j Y:yi|: [_ viix (i — 1 )XjY:y}
di X + 4 i Prix(ilX)
(101)
1 Py. i — 1
- ijdPX\Y:) (102)
i Py, 1x (yilx)
1 [ Pyix(i—1x) P
_ 1 vix (i —1lx) Y\x(ylx)dPX (103)
Vi Py, 1x (yilx) Py (y)
_ 1P yl)/ Py, x (yi — 11x)
Vi Py (y) Py, x (yilx) Py (yi — 1, f)
XHPyk\x(yklx)xdeX (104)
_ 1 Py (yi — 1,yl)/ Py, x (yi — 1]x)
Vi Py (y) Py(yi —1,5f)
x [T PraxOrlo)xjdPx - (105)
ki
1 Py(yi —1,y)
= T YRy = (i — 1, y9). (106)
i Py (y) g Vi i)
O
Lemma 3.
Py (yi + 1, yf)
E(giX + AilY =y) = (yi + )———". (107)
Py (y)
Proof of Lemma 3. First observe that
Py. i+ 1|x
dix i = (p + 12X O 1) (108)
Py, 1x (yilx)
We have
E(gi X + 4ilY =y)
Py, x(yi +11X)
:(-—i—lE[ SR Y = (109)
it D Py, 1x (yi]X) Y
Py,ix (i + 11x)
= (41 / Pxiy—, (110)
it Py, 1x (yilx) Xr=y
yi+1 [ Pyrx(yi+ 1|x)
= : Pyix(ylx)dPx  (111)
Py (y) Py;1x (vilx) |
1
= 2 Py i 10 [ Prx klo)d Py (112)
PY()’) X keti
Py(yi +1,y))
= (y + N2 i) (113)
O DTG
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Lemma 4.

]E|: 1 vy — :|:lPY(yi_1»in).
$iX + Ai yi Py (y)

Proof of Lemma 4. From the same observation in the proof
of Lemma 2, we have

(114)

1
E [7 Y = y}
¢,‘X"r‘/1i
1 Py i — 11X
[_M y— y} (115)
yi Prx(ilX)
1 [ Pyix(i—1
_ _/Mdpxlyzy (116)
Vi Py, x (yilx)
_ L[ Praxi =110 PrixGle) (117)

Py (y)

Py, x (i — 1]x)
T P dPx (118
Vi Py(y)/ Py.ix (yi|x) H vl x (Velx)d Py (118)

Vi Py, 1x (yilx)

= [ Prxi = 10 [T Proxindpy 19)

PY (y) ki
1 Py(yi — 1,yf
_ L Y(yl yl). (120)
yi  Pr(y)
Combining the previous derivations, we have
oI(X;Y)

=E (X log(¢:i X + /1,))

Elx; L
! ¢iX+/11

1) log ((H Yk!)Py(Y))}
k
= E (Xjlog(¢i X + %))

| E )

0D;;

E(XjIY))

x log ((H Yk!)Py(Y))] (121)
k
= E (X; log(¢i X + 1i))
Py(Yi —1,Yf .
- [T(Y)IE[X Y =¥ —1,Y9)]

x log((H Yk!)PY(Y)) ]
k
+E { (E(X;]Y)) log ((H Yk!)Py(Y))} (122)

3
= E (X; log(¢i X + 1i))

PY(yl_laylc) . _ L c
—/{WIE[XJIY—(% 1, y)]
xlog(q‘[yk')Py(y)) —de}

E { (E(X;|Y)) log((H Yk!)Py(Y))} (123)

k
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= E (X; log(¢i X + 1i))

—/‘PY()’)E[XﬂY:y]

xlog (((yi + D [Py i+1, yf)>dQY]

ki

+E [ (E(X;|Y)) log((H Yk!)Py(Y))] (124)

k
= E (X, log(¢i X + 41))

—/ ‘E[X,-w =y]

xlog (((yi-i-l)!Hyk!)PY(yi +1, yf))
ki

d Py
XE‘ZQY]

+E [ (E(X;1Y)) 1og((H Yk!)py(y))} (125)

K
= E (X; log(¢i X + 1i))

-E ‘E[xjw]

x log <((Yi + 1)!HYk!)Py(Y,-+1, Yf)]

ki

+E [ (E(X;|Y)) log((H Yk!)Py(Y))] (126)

k
=E (Xj log(¢i X + /1,'))

—E [E(X,-w) log(Yi—i-l)M] (127)
Py(Y)
= E (X, log(¢i X + 41))
—E[E[X[Y]log(E[¢; X + 4;[Y])] (128)
=E (Xj log(¢:i X + /1,-))
—E[E[X ]log(E[#: X + Ai|Y])] (129)
:E(Xj log%), (130)

where (122) follows from Lemma 2. (124) is obtained by a
change of variable on y;, together with the fact that % = Py
for the counting measure Qy. (128) follows from Lemma 3
and (129) follows from Fubini’s Theorem [28].

Hence, we have

(VoI(X;Y));; = E[X;log(®X)i+1;)]
—E [E[X;|Y]log E[(®X);+4i|Y]].
(131)
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Now we present the proof for the gradient of mutual
information with respect to the dark current:

2
oI(X;Y) 0 i fY\IX
A2 = E(G_ﬂul 10gfy|x()’|x)10g f{}’ ) (132)
i /li /l,'
:E(aﬁifnx()’lx) log fY;(). 133)
fy{x(ﬂx) Iy

Given the Poisson channel assumption, we can get that

o . 0 _ .
1 i—1 —(¢ix+A)
— —Yi(¢ix + /'{l.))z e i i
¥i!
1
+— (gix + 20)” (—e—@f”*l‘)))
Yi:
1
x H —(rx + ik))’ke*(d’kaF/lk) (135)
- k!
k#i
1 (il Vi
= L o )V it (7 _ 1)
y,-!(¢l i) Fox 7
1
x H —'(¢kx + /lk)yke—(¢kX+ik) (136)
ki Ok
Vi Xi
= — 1) Py . 137
(¢ix py ) y|x(y|x) ( )
Followed by similar steps from (83) to (98), we obtain
oI(X;Y
S~ B log(iX +40)
1

~E [(ﬁ - 1) log ((1:[ Yk!)Py(Y))}

= E (log(¢i X + 4:))

_]E{(E () )

xlog ((H Yk!)Py(Y))} (138)
k
= E (log(¢i X + 4i))
-E {M?’%&;m log ((1;[ Yk!)Py(Y))}
+E [1og((1'[ Yk!>PY(Y))} (139)
k

= E (log(¢ X + 4:))

—/[log (((yi+1)!Hyk!)Py(yi+l, yf))cle’

ki

+E {mg ((H YmPY(Y))}
k

(140)
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= E (log(¢i X + 4;))

—E {log [((Vi+ D! [ ) Py (¥i+1, ¥f
ki

+E [1og((H Yk!)Py(Y))] (141)
k
= E (log(¢i X + 4i))
-E {log(Yi + 1)%] (142)
= E (log(¢i X + 4i))
—E [log(E[¢i X + 4;[Y])], (143)

where (139) and (143) follow from Lemma 4 and Lemma 3.
(140) is obtained by a change of variable on y;, together with
the fact that % = Py for the counting measure Qy. Hence,
we have

(ViI(X;Y)); = E[log((®X); + 4i)]

—E[logE[(DX); + A;|Y]].  (144)
O
X. PROOF OF THEOREM 2
Proof: First we notice that
I1(C;Y)=HY)—H(Y|C) (145)

=HY)-HY|X)+H|X,C)—H(Y|C) (146)
=1(X;Y)-I1(X;Y|C), (147)
where the second equality is due to the fact that C - X — Y
forms a Markov chain and Py|x,c = Py|x. Following similar
steps as in the proof of Theorem 1, we have
VoI (X; YIO)]; =[E[X, log(®X); +11)]
~E[E[X;]Y, Cllog E[(®X); + 1Y, C1]].

Hence,

[VoI(C;Y)]; = —E[E[X;|Y]logE[(®X); + 4;|Y]]
+E[E[X;]Y, Cllog E[(®X); + 4i|Y, C]] ]
(148)
= —E[E[ELX,|Y,C]| Y]
x log E[(®X); + 4| Y]]
+E[E[X;|Y, Cllog E[(®X); + 4;|Y, C]]
(149)
= —E[E[E[X,]Y,C]]
x log E[(®X); + Ai|Y]| Y]
+E[E[X;|Y, Cllog E[(®X); + 4;|Y, C]]
(150)
= —E[E[X,|Y, C1log E[(®X); + 4;|Y]]
+E[E[X;|Y, Cllog E[(®X); + 4;|Y, C]]
(151)
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. [E[ X,17, C1log EI@X)i & 1Y, C]}

E[(®X); + 4;]Y]
(152)

Similarly, we have

(Vil(X: Y|C)); = E [log((®X); + 4i)]
—E [log E[(®X); + 4;|Y, C]]. (153)
Therefore the gradient with respect to the dark current can be
represented as
E[(®X); + 1Y, C]
E[(®X); + 4iY]

V,I(C;Y)); =E |:10g :| (154)

O

XI. PROOFS OF THEOREM 3, THEOREM 4 AND 5

Proof of Theorem 3. We first show the non-negativity. Since
F is strictly K-convex and Fréchet differentiable, by the first
order derivative characterization of K-convexity for Banach
space [33], we have F(x) =g F(y)+ DF(y)(x —y). Hence,

Dr(x,y) >k 0. (155)

Now we show the linearity. Let ¢; > 0 and ¢; > 0 be two
arbitrary positive constants. We have
DeiFie,6(x,y) = c1 F(x) + c2G(x) — 1 F(y) — 2G(y)
—D(c1F +c2G)(y)(x — y) (156)
= c1(F(x)=F(y))—caDF(y)(x—y)
+c2(G(x)—G(y)) —c2DG(y)(x —y) (157)
= c1Dr(x,y) + c2Dg(x, y). (158)
Last, we show the K-convexity. For 0 < 6 < 1 and
x,y,z € Q, we have
Dr(@x + (1 —0)z,y) = F(Ox + (1 —0)2) — F(y)

“DF()(Ox+(1—0)z—y) (159)

IA

kOF(x)+ (1 —0)F(z) —0F(y)
—(1=0)F(y) —0DF(y)(x)
—(1=0)DF(y)(z) + 0DF(y)(y)
+(1 —=0)DF(y)(y) (160)

=0(F(x) — F(y) = DF(y)(x — y))
+(1 —-0)(F(z) — F(y)
—DF(y)(z—Y))

=0Dp(x,y)+(1-60)Dr(z, y). (162)

(161)

Proof of Theorem 4. By the assumption that K is the space
of the first quadrant, we have that the <x means the entry-wise
convexity. Recall from that the Legendre transform (F*, y*)
on a convex set Q for the pair (F, y) is such that as

F(y) = —F*(") + b"y"]
DF(y)(x) = [T x],

(163)
(164)
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where [a] denotes the m x n matrix with all identical entries a.
The dual point of y is the vector y* such that the following
equality holds for all vector x € R¥

DF*(y")(x) = [y"x]. (165)
We also have the following properties

F*(y) = =F(y) + 1) y] (166)
DF*(y")(x) = [y"xl. (167)

Plugging the above equations in Dp(x, y), we have
Dr(x,y) = FQ)+F () ="y 1-16"" (xr=y)]  (168)
= F(x) + F*(3") = [ x] (169)
= FQ)+F ()= 1=x" (" =] (170)
= Dp+(y", x7). (71)
O

Proof of Theorem 5. Let Y’ := E[X|s1]. We have

Ex,y[Dr(X,Y)] —Ex y/[Dr(X,Y")]
=Exyy[FY")—F(¥)-Dr(Y)(X - Y)

+Dr(Y') (X —Y")] (172)

=Eyy[F(Y") = F(Y)] = E[E[DF(Y)(X — Y)]|s1]

+E[E[DF(y)(X = Y)Is1]] (173)
=Eyy[F(Y") = F(Y)] = E[Dr(Y)(Y' = Y)]

+E[Dr(Y)(Y' = Y")] (174)
=Eyy[F(Y") = F(Y)-EDr(MY -Y)II  (175)
=Eyy[Dr(Y)(Y',Y)] =k 0. (176)

The last inequality follows from the non-negativity property
and (174) follows from linearity of Dp(Y).

On the other hand, if Ey y/[Dr(Y)(Y’, Y)] = 0, we must have
Y’ = Y, which follows from the property that F is strictly
K-convex if and only if F(y) >x F(x)+ DF(x)(y — x) for
x #y [33]. Il

XII. PROOF OF THEOREMS 6-9

Proof of Theorem 6. We first show the Poisson case. Notice
that DF(E[X|Y])(-) is a linear operator. Thus,

E[DF(E[X|Y])(X — E[X|Y])]
= Ey[E[DFE[X|Y])(X)|Y]]

—Ey[DFE[X|YD)(E[X|YD] (77)
=Ey[DFE[X|Y])(E[X|Y])]

—Ey[DFE[X|Y)(E[X|YD] (178)
=0. (179)
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Hence,
E[Dr(X,E[X|Y])]
= E[X (log(®X +1))" —[X
(log(PE[X|Y])+ )T +[E[X]|Y],...

., X1-E[X|Y]
,E[X|Y]]] (180)
= E[X (log(®X +2))" —E[X|Y](log(PE[X |Y]+4))"](181)
=Vol(X;Y). (182)

For the Gaussian case, the differential of the function
DF(x) can be represented under the standard basis as

DF(x) = (I, @ ADx) + (x @ I,,) AD® (183)
ADx X1 AD
= + : (184)
ADx xp AD
AD X
AD X
AD xi11y
+ : (185)
AD xnly

= @ADL, @x)+ (I, ® AD)(x ® I,), (186)

where I, and I, are the n x n and m x m identity matrices.
Let y € R", we have

DF(x)(y —x) = (In @ AD)([, @ x + x Q@ I,)(y — x) (187)
2x1 0 ... O
x x1 ... O
x, O X1
= (I ® AD) (y —x).
xp, O ... xp
0 X2
L. Xp
0O ... 0 2x,
(188)

Note that DF (x)(y — x) is a vector of size mn x 1, which is

obtained by vectorizing the matrix form D F (x)(y — x). Since

those two forms are just two different representations of the

same differential, we abuse the notation D F (x)(y —x) without

discrimination. By re-vectorizing D F (x)(y — x) to the matrix

form, we have (189), as shown at the top of the next page.
Hence it is straightforward to verify that

Vol(X:Y)
— ADE [(X —E[X|Y])(X — IE[X|Y])T] (190)
= AOE [XXT — XE[x|Y1" —E[x|y1x7
+E[X|YIEX|Y] ] (191)
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2x1y1 —2x12

X2y1 + x1y2 — 2x2x1
DF(x)(y —x) = A® .

XpY1 + X1Yn — 2Xp X1 XpY2 + X2Vn — 2XpX2

X1y2 + x2y1 — 2x1x2
2x2y2 — 2x§
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© X1Yn Tt Xny1 — 2X1X

< X2Yn T+ Xny2 — 2X2X,
i (189)

2

n

2XpYn — 2x

— AOE [XXT — E[X|YIE[X|Y]T

—DF(E[X|Y])(X — IE[X|Y])] (192)

=E[Dr(X, E[X|Y]D]. (193)

The first equality follows from the result in [3].

Finally, we need to show F(x) is strictly K-convex for both
Poisson and Gaussian cases, which depends on specific choice
of the cone K. Thus, here we only show that there exists
a K such that F(x) is strictly K-convex. This is straightfor-
ward to check, if we choose K = {M € R™*"|M;; > 0 and
My = 0.¥G, j) # (1. 1)},

Proof of Theorem 7. We first show the Poisson case. Notice
that DF(E[X|Y])(-) is a linear operator. Thus,

E[DF(E[X|Y)(E[X]Y, C] — E[X|Y])]
= Ey [Ec)y[DF(E[X|Y])(E[X|Y, C])|Y]]

—Ey[DF(E[X|YD)(E[X|Y]] (194)
= Ey [DFE[X|Y])(E[X|Y])]
—Ey[DFE[X|YD)(E[X|Y])] (195)
=0. (196)
Hence,
E[Dr(E[X]Y, C], E[X|Y])]
= E[E[X|Y, C](log(®E[X|Y, C] + A))"
—[E[X|Y, C],...,E[X]Y, C]]
—E[X|Y](og(PE[X|Y]) + 1)T
+[E[X|Y], ..., E[X|Y]]] (197)
= E[E[X|Y, Cl(log(PE[X|Y, C] + A))"
—E[X|Y, C1(log(PE[X|Y]+ A)"]  (198)
=Vol(X;Y) (199)

For the Gaussian case, we notice that (189) is also valid for
arbitrary x and y, and in particular, by similar arguments as
in the Gaussian-case proof of Theorem 6, we can obtain

Vol(C;Y)

— AOE[(E[X|Y] - E[X|Y, C)(E[X|Y] — E[X|Y, C])]
(200)
= AOE[E[X|YIE[X|Y]" — E[X|Y]E[X|Y, C]"
—E[X|Y, CIE[X|Y]" + E[X|Y, CIE[X]Y, C]"]

(201)

= AOE[E[X|Y, CIE[X|Y, C]" — E[X|YIE[X|Y]"
—DFE[X|Y])(E[X]Y, C] — E[X|Y])] (202)

= E[Dr(E[X]|Y, C]), E[X|Y])]. (203)

The first equality follows from the result in [21].

Finally, we need to show F(x) is strictly K-convex for both
Poisson and Gaussian cases, which depends on specific choice
of the cone K. Thus, here we only show that there exists a K
such that F(x) is strictly K-convex. This is straightforward
to check, if we choose K = {M € R™"|M;; > 0 and
Mij = 0,YG, j) # (1, 1)).

Proof of Theorem 8. By using (189), we have that

Dp(Ep[X|/yX + N1,Eo[X|/y X + N])
= (Ep[X|/7 X + N1 = Eg[X|\/y X + N])
x (Ep[X|y/TX + N1 —EglX|y7X +NI)'. (204)

Hence,

1 o0
EEP [/0 Tr [DF(Ep[X|V/7 X+N1,Eo[X|/7 X+NJ)| dl’}

1 o
:EEP M I Ep[XIV/7 X+N1-Eo[X|/7X + N) |I§d3’}
(205)

= D(P[|Q). (206)

The last equality follows from Theorem 1 in [4].

Proof of Theorem 9. It is straightforward to see that the
natural map 7 : Mg — M definedas Z : ® — (O, Ip(X; Y))
is a diffeomorphism. It is enough to show that the length
of any C! curve c(t) : [0,1] > Mg connecting two points
®; and @, under the metric g is the same as the length of
Z(c(t)) connecting Z(®1) and Z(P,) under the metric J. The
length of ¢(¢) in (Mg, g) can be calculated as

1

le@)llg = /0 V@O, @i (207)
1

_ /0 J@) g0 (208)

mn

D [ELDF (X, ELX|Y DI (c}(1))%dt (209)

i=1

=/01
2/01

mn

D [ELDr (X, ELX|YD]icj(D1dt  (210)
i=1

1 | mn
— [ |t vy @1
i=1
1
_ /0 @) 3@ )y dr 212)
1
_ /0 VAT, T 213)
1), (214)

where (211) follows from Theorem 6 and the chain rule.
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