1348

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 6, MARCH 15, 2014

Asymptotic and Non-Asymptotic Analysis of Uplink
Sum Rate for Relay-Assisted MIMO Cellular Systems

Hao Wu, Liming Wang, Member, IEEE, Xiaodong Wang, Fellow, IEEE, and Xiaohu You, Fellow, IEEE

Abstract—We consider uplink relay-assisted MIMO cellular sys-
tems with multiple relays deployed in each cell that perform the
amplify-and-forward operations. We are interested in obtaining
deterministic expressions for the ergodic sum rate of such systems.
We first consider the large MIMO dimension scenario, and obtain
two asymptotic sum rate expressions, corresponding to the cases of
fixed number of users and large number of users, respectively. We
then consider the case of arbitrary MIMO dimension and large
number of users, and obtain an upper and lower bound that the
sum rate lies in between with high probability. The bounds are tight
when the number of users is large. Both single-cell and multi-cell
systems are considered, where the latter assumes full base station
cooperation. Numerical experiments show that these deterministic
sum rate expressions match well with the Monte Carlo simulation
results. Therefore they can be useful tools for the design and anal-
ysis of relay-assisted MIMO cellular systems.

Index Terms—Uplink sum rate, MIMO, relay, multi-cell,
random matrix, asymptotic analysis, non-asymptotic analysis.

I. INTRODUCTION

ELAY-ASSISTED cooperative communications have re-

ceived significant recent interests due to their potential of
enhancing the system throughput. Among the several existing
relay strategies, the amplify-and-forward (AF) scheme is easy
to implement and amenable to theoretical analysis. In particular,
the rate of wireless AF systems is analyzed in [1]. In [2] and [3],
the asymptotic rate of a MIMO AF system with finite number
of relay hops is analyzed when the number of antennas is large.
Optimal precoding at the source and relays is also discussed to
maximize the asymptotic sum rate in [2]. However, these works
consider only the case of a single transmitter and receiver, and
the direct link from source to sink is ignored. On the other hand,
the achievable rate of a MIMO relay system employing the AF
strategy is discussed in [4]-[7] and [8], where the direct link
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from the source to the destination is considered. Furthermore,
the ergodic capacity and the optimal input covariance matrix to
achieve the capacity are analyzed in [9] with the presence of
multiple relays and direct link.

In this paper, we are interested in computing the sum rate of
an uplink MIMO AF system in a single-cell or multi-cell net-
work with multiple relays. The multi-user capacities of uplink
and downlink MIMO systems are given in [10]. More recently,
multi-cell systems have been considered [11]. In [12], a multi-
cell processing model is considered where a full BS coopera-
tion strategy is employed resulting in an augmented multi-user
model. The asymptotic sum rate for such system is then ana-
lyzed using the random matrix theory. Moreover, the sum rate
of an uplink TDMA multi-cell system with non-regenerative AF
relays is analyzed in [13], where it is assumed that the mobile
users serve as relays to help each other. In this paper we are
interested in systems with fixed relay stations that perform AF
operations.

Specifically, we perform both asymptotic and non-asymptotic
analyses on the sum rate for MIMO cellular communication sys-
tems employing fixed AF relay stations and multi-cell coopera-
tion. We start from a single-cell uplink MIMO system with mul-
tiple AF relays and multiple users in Gaussian fading channels.
The relays just amplify and forward the signals, and we consider
precoding matrices at both users and relays. At the receiving
end, the base station (BS) receives and combines signals from
all users and all relays. All channel links including users to BS,
users to relays and relays to BS (Fig. 1) are taken into account.
In addition, the Kronecker model [14] is employed to model
correlated MIMO channels. The asymptotic results that we ob-
tain are useful in calculating the sum rate of a system with large
number of antennas. On the other hand, the non-asymptotic re-
sults are useful for systems with any number of antennas and
large number of users. Extension to multi-cell systems is also
given.

The remainder of the paper is organized as follows. In
Section II, we give the system model. In Section III, we provide
two asymptotic analyses on the sum rate. The non-asymptotic
analysis is given in Section IV. Numerical results are provided
in Section V. Section VI contains the conclusion.

II. SYSTEM MODEL

We start by considering a single-cell MIMO system with re-
lays. Specifically, the cell has one BS at the center, X mo-
bile users at random locations within the cell and M relays at
some fixed positions. The amplify-and-forward (AF) strategy is
adopted at each relay, where a precoding matrix is applied to
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BS: Ny antennas

User i: Ni antennas Relay j: Nk antennas

Fig. 1. An uplink single-cell MIMO system with relays.

iSlot 1. I slot 2|
i Tx: User
iUser Rx: Relay and BS Idle
i Tx: Relay
et rae w5

Fig. 2. The two-stage amplify-and-forward (AF) relay strategy.

the received signal which is then forwarded to the BS. The BS
receives the signals from all users and all relays. Moreover, we
assume perfect synchronization among the relays so that there
is no interference among them.

The system model is depicted in Fig. 1, with various param-
eters annotated. Specifically, we assume that each user has Ny,
antennas, each relay has Ny antennas and the BS has Ng an-
tennas. User ¢ transmits information signal x; through a pre-
coding matrix F';, which is received by the BS and all relays. We
assume unit transmit power, i.e., E{zfz;} = 1. The channel
matrix between user ¢ and the BS is H;, and the channel matrix
between user 4 and relay j is H?. Upon receiving the superpo-
sition of all user signals, relay j forwards it to the BS using a
precoding matrix F;, and the channel matrix between relay j
and the BS is H 3 Although the BS also receives the noise for-
warded by each relay, it was shown in [1] that the impact of
such forwarded noise on the system capacity is negligible. In
Section V, simulation results demonstrate that the system ca-
pacity is hardly affected by the relay noise. Therefore we only
consider the additive noise at the BS.

We employ a two-stage AF relay strategy as in [4]-[8] shown
in Fig. 2. In the first slot, each user transmits its signal and all
relays and BS receive the signals, and the relays do not transmit.
In the second slot, relays forward the signals received during the
first slot and the BS receives the forward signals. The users do
not transmit during the second slot.

According to the description above, by stacking the received
signals by the BS in the two slots, we obtain the following signal
model

"
Y= ZGﬁqj—F’lU, )]
=1
. A HiFi )
with G; = [Z?ﬁl H;F;HiFL 2)

where w is the additive complex Gaussian noise with zero
mean and covariance matrix E{ww!’} = %I and p denotes
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the signal-to-noise ratio (SNR). In practical systems, some of
the users may not use relaying for uplink transmission because
of the half-duplex penalty in rate. In that case we can simply
set the relay powers for the users who choose not to employ
relaying to zero. Hence the analysis developed in this paper can
be applied to the general network scenario where some users
employ relaying and others do not.

We assume that the MIMO channels are in general spacially
correlated according to the Kronecker model [14] and can be
expressed as

H, = R'W.T?, 3)
" ’I‘.l T T‘Al
H; =R*WiTS?, (4)
and HI =R]*WIT". )

In (3)—(5), the matrices W;, W’ and Wf contain zero-mean
independent and identically distributed (i.i.d.) Gaussian entries;
the matrices R;, R}, R}, T;, T"; and T are fixed correlation ma-
trices. We assume that the precoding matrices F'; and F; are in-
dependent of W, W', and WZ . This is the case when covariance
feedback is employed, i.e., when the precoders are designed
based on the channel covariance matrices [15]. This assump-
tion is also reasonable when codebook-based precoders are em-
ployed [16]-[19], e.g., the DFT codebook, in which case the
correlation between the precoder and the channel is sufficiently
weak. Furthermore, the path loss is taken into account in the
channel model, so that different matrices have different vari-
ance profile functions [2]. In particular, we have

v 2 var{Wi(-, )} = (di) 7, (©)
v £ var {WLJ(7 )} = ((l{)id @)
and v £ var (Wit} = ((l;‘)ﬂ/a , 8)

where d; denotes the distance between user ¢ and the BS, df de-
notes the distance between user ¢ and relay j, and d; denotes the
distance between relay j and the BS, /3 is the path loss exponent.

The system given by (1)—(2) is essentially a MIMO MAC
model and its ergodic sum rate is given by

K
C=E {10gdct (I + PZGiQiG?> }

=1

(€))

where @, = E{z;x } is the transmit covariance matrix of user
1. In general, we need to resort to Monte Carlo methods to com-
pute the sum rate in (9). Our goal is to find some deterministic
expressions that can well approximate in (9), especially for large
MIMO systems and/or large number of users.

Before we move to the asymptotic and non-asymptotic anal-
ysis, we introduce the Shannon transform of the random matrix
Y, GiQGY, given by

K

I+pZGiQiGﬁ] , (10)

=1

52N

1
Dy, = log det
B

which is simply the sum rate per receive antenna at the BS.
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III. ASYMPTOTIC ANALYSIS

In this section, we perform the asymptotic analysis and derive
the deterministic equivalents for the per-receive-antenna sum
rate given in (10). We consider two asymptotic cases. The first
case corresponds to large MIMO dimensions but fixed number
of users; whereas the second case corresponds to large MIMO
dimensions and/or large number of users.

A deterministic equivalent is a deterministic approximation
to some transform of a random matrix (e.g., the Shannon trans-
form in (10)); and the approximation error goes to zero with
probability one when the dimension of the random matrix goes
to infinity. Specifically, suppose that {B,, € C"*"} is a se-
quence of random Hermitian matrices, and { f,,} is a sequence
of functionals of 7 X 7 matrices. A deterministic equivalent of
B,, for the functional f;, is a sequence of deterministic matrices
{B;, € C"*"}, such that

lim f.(By) —

n—0o0

fa(By) =0

with probability one. Note that f,, (B, ) does not need to have a
limit as n — oo.

A. Large MIMO Dimensions, Fixed Number of Users

In this subsection, we derive the deterministic equivalent of
the per-receive-antenna sum rate when the MIMO dimension is
large but the number of users is fixed. In [3], the deterministic
equivalent of the rate of a multi-hop relay system is analyzed.
However, the direct link between the source and destination is
ignored, whereas in this work we consider multiple two-hop
relay systems with direct links.

We will make use of the results in [20] and [21] on the deter-
ministic equivalent of the Shannon transform of a random ma-
trix B of the following form:

K
By =Y HH{, (11)

k=1

where
T
Hy=[H{,.. H,] (12)
L 1

and Hlk = RIQlekTZQk. (13)
X, € CV*™ has ii.d. entries and % has zero mean

and unit variance; Ry, € C¥* and Ty, € C™ ™ are non-
negative definite Hermitian matrices. Under certain conditions,
the deterministic equivalent of the Shannon transform of By :
Dy(z) = + logdet(I + By ) for z > 0 exists when N and
all n;, grow large, and it depends on {N, ny. R, T} and the
unique solution of a fixed point equation. In [20], the determin-
istic equivalent is obtained under the condition that . = 1 and
X ’s are Gaussian. This result is extended to random matrices
with L > 1 and arbitrary distribution in [21], where it is shown
that if the entries of X ;. ’s have finite 6th-order moments, then
the difference between the Shannon transform of By in (11)
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and its deterministic equivalent has the order O( \/—) If Xi1's

are Gaussian, the difference becomes (’)( % )- We have the fol-
lowing result.

Theorem 1: Consider the single-cell MIMO system with re-
lays defined in Section II with one BS, K users and M relays,
where the BS has N antennas, each user has Ny antennas and
each relay has N antennas. Assume that the channel correla-
tion matrices satisfy R}, ~ R; for j # i and T; = T. Assume
further that the eigenvalues of T'; and R; are bounded.

Define

Sj A TVjﬁFrjRj%
and M, T F.Q.FIT?.

(14)
(15)

1
2

Then for fixed Ne = O, asNg — oc, Ny —
00, the per-receive-antenna uphnk sum rate defined in (10) sat-
isfies

Dy, — Dy, — 0, (16)
where the deterministic equivalent D7 is given by
| X 2
DTVB = _2]\73 Zlog det INU + (lz el,iMi]
2N logdet |In, + Z; Sibi Ry ]
K
+ 5 logdet | Ly + 2; 8, bQRT]
- 5= D b, 17
o IZ: e, (17
where
b = v Ny, (18)
and b 2 Z ,‘l-A(l, k) 7)1711; Ny. (19)
jike,d

{e15,6;,1 =1,2,4=1,..., K} form the unique solution to the
following set of fixed- -point equations:

r K
1 i ,
e1; = N_B tr |61 Rip (INB + ;(Skb’ka] , (20)
r ], X
20 = 3 by R p (INB + gékb’gR{] , 1)
1 : & —ﬂ
and (SL = N_U tr Mi/) (INU + (],IZ; (317,'M,‘> J . (22)
Proof: We will transform the random matrix

Efil G,;Q,;G,{{ into the form of (11) and then directly apply
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the result of [21] to obtain its deterministic equivalent. By
using (2)—(5), we can write

.
Z G:Q.GF

Sl

{ , HE (23)

M
x | R}? Z WiSiw!

=1

(24

A;

where (24) follows from (14)—(15) and the assumption that
R; ~ R; forj #iandT; = T?. Note that A, is an Ng x Ny
random matrix with the (yn, n)-th entry given by

M Ngzg Ng

ZZZSJ (L EYW ] (k, n)VV’(m 7).

j=1k=1 =1

(m,n) (25)

Since the entries of W, W7 and W7 are zero-mean i.i.d.

Gaussian random Varlables 1t follows that the entries of W,

and A; are i.i.d. with zero mean and variance f
Hence we have

K
> GiQGr
i=1
L
K V Z1 z‘) , \/blR; be
\/TR ry j ' B R”E : » (26)
where the entries of NG NG are 1.1.d. with zero mean and

variance \%/, which is exactly the same form as (11). Theorem
1 then follows directly from the result in [21]. [ |

Given K, Np, Ny, Np, the channel correlation matrices
{R:,R;, R, T;,T;,T!} and the variances {v;,v},v]}, by
solving the fixed-point (20)—(22), we can then obtain the
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asymptotic per-receive-antenna sum rate using (17). This pro-
vides an efficient way to evaluate the system capacity since no
Monte Carlo simulations are needed.

B. Large MIMO Dimensions, Large Number of Users

In the previous subsection, the number of users K is fixed and
we considered the large MIMO dimension regime, i.e., Ng —
oc and Ny — oc. In this subsection, we consider another
asymptotic scenario where the MIMO dimension is large and
the number of users can also be large. Specifically, we let Ng —
oc, K Ny — oo, and keep the ratio % fixed.

Our derivation of the deterministic equivalent of the asymp-
totic per-receive-antenna sum rate in this case is based on the
following result [22], [23]. Suppose that an N x n random ma-
trix Z whose entries are independent zero-mean random vari-
ables satisfies the Lindeberg condition

%Z[E{|Z(ia.7)|21{|z(iaj)| > 61} =0 27)

for any ¢ > 0 when N,n — oo. Then the deterministic equiv-
alent of Z and its Shannon transform for large N and 7 can be
obtained, which is a function of the variances of the entries of Z.
We focus on the random matrix in (23) and its Shannon trans-
form Dy, . Our basic idea here is to transform the matrix sum-
mation in (23) to matrix product and then explore the asymptotic
characteristic of the transformed random matrix. Define

a1 1
L, =T F.Q;, (28)
. .1
L 2T FQF, (29)
1
and S’ =T 2F R’ 2 (30)
Then we can rewrite (23) as
K
> GG =z7z", 31
i=1
where Z is a 2N x K Ny matrix, given by
[G1Q1 ..... GKQK}
RWL =1,....K|. (32
Z R} ZW’SJWJLJ

Define a 2Np x K Ny matrix ¥ whose entries are given by

(s, 1) 2

where the variance of the (s, ¢)-th entry of Z can be calculated
as (34), shown at the bottom of the page, with ¢, = [%] -1
and [-] being the ceiling operator.

Np var{Z(s,t)}, (33)

]R (s,0)Li, (k. t — i, Nyy)

Z],m n. k.l

var{Z(s,t)} =

(Q—NB 1)57 (m, n)L] (k,t —i:Nir)

vi, if s < Np

2 (34)
YJ‘Zt 71;' if s > Np
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We have the following result.

Theorem 2: Consider the single-cell system with relays de-
fined in Section II, where the BS has Ng antennas, each user
has Ny antennas, and the cell has K users and M relays. As-
sume that the random matrix Z in (32) satisfies the Lindeberg
condition in (27). Then by fixing the ratio 33 ENu — 4, and when
KNy — oo, Ng — o0, the per-receive- antenna sum rate Dy,
in (10) satisfies

DNR - DT\’B — 0, (35)
where the deterministic equivalent DY, is given by
Np = KN ———1%n, - log[lrny, + p=Tu
1
+ ml%}VB . log [12]\'3 + (L[)E'U]
—apul Twloge, (36)

where 1 denotes an N -dimensional all-1 column vector, and
log @ denotes a column vector whose entries are the logarithms
of'the corresponding entries in #. The 2N g -dimensional column
vector # and the K Ny;-dimensional column vector » form the
unique solution to the following fixed-point equations

1
Us = . ’

2N (1 +ap DI (s 1)

s=1,...,2Ng, (37
1
and v = NB
KNu(1+p3227 2(s, ) )

=1,...,KNy. (3%
Proof: See Appendix A. [ |

Note that unlike Theorem 1, Theorem 2 makes no assump-
tions on the MIMO correlation matrices. On the other hand, the
asymptotic regime of K Ny — oo, Ng — 00, 12{3[‘; = a, sub-
sumes a special case of fixed K and Ny — oc, which is the
same asymptotic regime considered in Theorem 1. Numerical
results in Section V indicates that with fixed K, the determin-
istic equivalent given by Theorem 1 is more accurate than that

given by Theorem 2 when Np and Ny are large.

IV. NON-ASYMPTOTIC ANALYSIS

The asymptotic analysis in the previous section considers the
regime of large MIMO dimensions, with the number of users
either fixed or large. In this section, we consider another regime
with the fixed MIMO dimensions, and large number of users.
We will treat both single-cell and multi-cell cases. The tool em-
ployed for this case is the non-asymptotic analysis [24], and we
will obtain deterministic upper and lower bounds which the sum
rate lies in between with high probability.

Asymptotic methods explore the limiting characteristics of
the eigenvalues or singular values of the random matrices. On
the other hand, non-asymptotic methods try to find upper and
lower bounds to constrain the singular values of the random
matrices by cutting the tail of the probability distribution func-
tion (pdf) of the entries. The singular values can be constrained
within the bounds with high probability because the tail of the
pdf decays fast.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 6, MARCH 15, 2014

A. Single-Cell

In this subsection, we still focus on the random matrix Z de-
fined in (32). Each entry of Z is the sum of Gaussian random
variables and products of Gaussian random variables. It will be
shown that the pdf of the entries of Z has sub-exponential de-
caying feature. Therefore we can obtain the bounds for the sin-
gular values of Z through cutting off the tail of the pdf of its
entries.

In order to obtain the bounds on the sum rate through the
bounds on the singular values of Z, we rewrite the sum rate in
term of the singular values:

2

where AL, denotes the i-th eigenvalue of ZZ", and s}, de-
notes the ¢-th singular value of Z.
Note that from (32), we can write

C = E{logdet[I + pZZ™]}

2Np .
=E {Z log [14 pAyzu]

i=1

=E {zgflog [1 +p (S‘Z)Q}

=1

(39)

_ Zg _ Z}}‘: Zg
where
L2 RIW,L;, (41)
. M 1 . .
and Zp £ RjFWSIWILL (42)
j=1
Then similar to (34), we have (43) and (44),
var{Za(s,t)}
2
-y ’R_ (s,)Ls (h,t — isNv)| v, 43)
h,l
and  var{Zg(s,t)}
, , 2
= Z ‘R;%(s, l)S,fL (m, ’rL)LfL(h, t—i:Ny) Ufl vy,
Fymon el
(44)

where iy = [5—] — 1

We have the following result on the sum rate bounds for fixed
MIMO dimensions and large number of users.

Theorem 3: Consider the single-cell system with relays de-
fined in Section II, where the BS has N antennas, each user
has Ny; antennas, and the cell has K users and M relays. For

any g > 0 and large K, with probability at least

1 — 2[exp(— KNpq)+ cxp(—@qz)], (45)
we have
V2K Ny — 2¢37/Ng — V2¢ < sz
S \/ 2KNU —|— 2(33\/ 17VB —|— \/iq (46)
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If we choose ¢ to ensure the lower bound in (46) is positive, we
then have with probability in (45)

2Ng log[l + p(v/2K Ny — 2¢57/Np — V2¢)?]
<C

< 2Nglog[l + p(v/2K Np + 2¢37/Np + vV2¢)?),
47)

where ¢1, ¢z and ¢3 are constants satisfying (48)—(50).
Proof: See Appendix B. [ |
The valid ranges of the constants ¢, ¢o and ¢5 are given as
follows based on Appendix B:

8Nplog9 1 1
—— 2 < ¢ < Kms — — 48
KNg < < m‘LX<KE7K%> (48)
8Nplog9

1 1
< ¢ £ Kmax (—, —> (49)
- K1 K2

KN
1 . .
and 2max | 4/ 089,2‘/ 2N log?
Co KNy ¢

Cer<y /ol (50)
2Np
where
Kg 2 1113X(263var2{Z(;(1, )}, 5D
and  Kp £ max(e’y/2var{Zp(LK)}).  (52)

Since we would like to make the bounds tight and maximize
the probability that the sum rate C' lies within the bounds, we
choose the parameters as follows:

1
¢1 = Kmax < (53)

1

s = Kmax ( 54)

1 1 >
K& KZ)7
log9 2Np log9
124/ . (55
cay KNy ¢ (33)
Moreover from (45) and (47), when ¢ is large, the probability
that C' is between the bounds is large, but the gap between the
bounds is also large.
If we use By and By, to denote the upper and lower bounds

in Theorem 3, respectively, then the gap between the upper and
lower bounds satisfies the following

and ¢3 = 2max (

(B =B

1+ p(v2E Ny + 2e3v/Np + V2q)?

1+ p(vV2K Ny — 2¢37/Ng — V2¢)?
(56)

=2Ng lim log
K—oc
=0.

The bounds are asymptotically tight from this point of view.
Furthermore, if we choose the parameters according to
(53)—(55), then ¢1, ¢ — oc as K — oo since the variances do
not change with K. Therefore the probability in (45) tends to 1
as K — oo.

Compared with the asymptotic results in the previous sec-
tion, the non-asymptotic bounds can be used for regular MIMO
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Fig. 3. A multi-cell MIMO system with relays.

systems with small numbers of transmit and receive antennas.
Moreover, the non-asymptotic bounds are even simpler to
compute than the asymptotic results since they do not involve
solving fixed-point equations. Note that although the bounds in
(47) are expressed in terms of K, Ng, Ny and p, the constants
¢1,¢o and ¢y are functions of Ng as well as the correlation
matrices.

B. Multi-Cell

We next extend the result obtained from the previous subsec-
tion for single cell to the multi-cell case, where the base sta-
tions jointly process the received signals to mitigate the effect
of inter-cell interference.

The multi-cell system is depicted in Fig. 3, where there are
totally N BSs, M relays, and K users. As in the single-cell
case, the relays receive signals from users and forward them to
the BSs. Each BS receives signals from all users and relays.

We denote z; as the transmitted signal from user ¢ and y,,
as the signal received by BS n. The numbers of antennas at
each BS, relay and user are N, Nr and N, respectively. The
channel matrices between user ¢ and BS 7, between user ¢ and
relay j and between relay j and BS n are denotes as H'', H
and H ;-L, respectively. Moreover the precoding matrices of user
i and relay j are denoted as F'; and F7, respectively. As before,
unit transmit power is assumed, i.e., E{zFx,} = 1.

By stacking the received signals at all BSs in two time slots,
we have the following multi-cell uplink signal model

- G% G{{ -
. T
Gy, GX,
= - ~ D +w, 57
Y Gi Gilk (57)
. . IK
_ i i
L GZVG G]\rc J
where
G} 2 H]F;, (58)
, Mo ‘
and G £ H FH/F,. (59)

j=1
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wisthe2Ng- Np x 1 additive complex Gaussian noise vector with
covariance matrix E{ww! } = %I , where p denotes the SNR.
Under the Kronecker model, the channels are expressed as

Hn _ R‘IL % W‘ILT‘IL % (60)
171_", _ RIL 5 W’LTn‘ (61)
and H) = Rj SWIT! 3 (62)

y ~. T = ] . . .
where R}, R; and It; are receive antenna correlation matrices,
- = . : :
T}, T; and T; are transmit antenna correlation matrices, and

Sy =7 .. . .
Wi, W, and W are zero-mean i.i.d. Gaussian matrices. Fur-
thermore, considering path loss, the variances of the entries of
Gaussian matrices are

v £ var (W) (-, )} = (d) 7, (63)
o 2 var {W{(-, -)} = (J{) - (64)
and 07 £ var {Vi’f( )} = <d~,;-7’>7ﬁ (65)

where (3 is the path loss exponent, d* is the distance between

user 4 and BS n, d] is the distance between user ¢ and relay j
and d’! is the distance between relay j and BS n.
) NeT

rop 1T -,
Denote G; = [G,}T,...,szcT?Gi vy G
per-cell sum rate is then

el

1
=E {— log det(T 4 pZZH)} ,
N¢

]*. The

<I+p§GQGH)]

=1

(66)

where Q, = E{=; zH } is the transmlt covariance matrix of user

i,and Z £ [GlQl,.. /GBQK].
Denote
Zu S HIF, Q (67)
M A )
in A 7" o I 3
Zy &Y H;F;HF.QF, (68)
i=1
ol K1 A
. Zg Zg
Zg = (69)
ZL.Ne Z K Ne
- ZGl,l ZGK,I 3
E E
and Zg = : : (70)
1,N KN
Zyc Zptc
Then we have
_ | Zc
7= 2] o
Furthermore, if we define
n A ni i
L =T F,Q;, (72)
Fi A it 3
L; =T;"F.Q;, (73)
; ~ni — 41
and §I" ETCFIRI® (74)
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then we have (75) and (76),

var{Za(s,k)}
2
= ‘R;’; #(s = nyNp, DL (4, k — ixNor)| of,

i

(75)
and var{Zg(s,k)}
= Z ‘f?y%(e - nSNB,l)S] *(m, h)
F.bm bt
. . 2
xLi (t,k — zk.,NU)‘ v” oy, (76)
where i, = h—] —landn, = [§;

We now extend the non- asymptotlc smgle—cell sum rate
bounds in Theorem 3 to the bounds on the multi-cell per-cell
sum rate.

Corollary 1: Consider a multi-cell system with relays de-
scribed above, where there are N BSs, M relays and K users.
Each BS has N antennas and each user has Ny antennas. For
any g > 0 and large K, with the probability at least

1 — 2[exp(— K Nyq) + exp(—c2q?)], (77)
the singular values of the random matrix Z A satisfy
V2K Ny — 2¢57/NcNg — V2q
< sz <2KNy 4+ 2c37/NecNp + \/5(]. (78)

If we choose ¢ to ensure the lower bound in (78) is positive, then
for the per-cell sum rate C' we have with probability in (77)

p(\/2K Ny — 2¢37/NoNg — V2q)?]

2]\[3 10g[1 +

<C
< 2Nglog[l 4+ p(v/2K Ny + 2¢57/NeNp + vV2¢)?]
(79)
where ¢, c2 and ¢3 are constants satisfying (80)—(82).
Similar to (53)—(55), we set the constants as:
1 1
¢1 = K max (K—E K—%) , (80)
1 1
:KHlELX <K—é7K—é) s (81)
log 9 2NcNpglog9
and ¢y = 2max (\/ Oci .2 KC]YVUB chi ) (82)
where
K 2 n;ax(263var2{Zc;(s, k)b, (83)
and Kgp 2 n]}aux( 2var{Zg(s,k)}). (84)

Similar to (56), the bounds become tight with probability one as
K — oc.
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Fig. 4. The impact of relay noise on the per-receive-antenna sum rate.

V. NUMERICAL RESULTS

In this section, we illustrate the accuracy of the asymptotic
and non-asymptotic rate expressions derived in the previous
sections, by comparing them with simulation results. In all
simulations, the radius of each cell is 10 meters. Moreover, for
the variance profiles in (7)—(8) and (64)—(65), we set § = 4.
The correlation matrices have the form of UDUH , where U is
a random unitary matrix [25], and D is a diagonal matrix with
positive entries. The DFT precoders [26], [27] are employed
by the users and relays, and the codebook contains 4 DFT
matrices.

A. Asymptotic Results

For the single-cell case, the BS is located at the center of
the cell. Relays are placed uniformly on a circle centered at the
BS with a radius of 5 meters, and users are located randomly
in the cell. The distances between users and the BS and the
distances between users and relays are computed based on their
positions.

In order to show how performance is affected by the relay
noise, we conduct a simulation on per-receive-antenna sum rate
with and without relay noise. We set the number of relays M =
1, the number of antennas at each relay Nz = 8 and the number
of users X = 1. The numbers of antennas at each user and at
the BS are Ny = 8 and Np = 32. Signal power is set as 0 dB.
The relay noise power we evaluate is —2 dB, 2 dB and 6 dB.
Fig. 4 verifies that the impact of relay noise on the sum rate is
sufficiently small to be ignored.

In Fig. 5, we compare the the sum rates of two network sce-
narios: one is that all users employ relaying, and the other is that
only half of the users employ relaying with the corresponding
relay powers added to the transmission powers to make a fair
comparison. In this simulation, we set K = 4, Ny = 8, Np =
32,M = 8 and Ng = 8. It is seen that because of the re-
lays’ half-duplex penalty, the sum rate for the case that all users
choose to use relaying is slightly lower than that for the other
case.
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Fig. 6. Per-receive-antenna sum rate as a function of SNR.

Fig. 6 shows the per-receive-antenna sum rate obtained by
simulations and the deterministic equivalents given by Theo-
rems 1 and 2. We set M = 8 and Ng = &. We consider the
scenario that K = 4, Ny = 8 and Ng = 32. It is seen from
Fig. 6 that both theorems provide fairly accurate deterministic
approximations to the per-receive-antenna sum rate.

In Fig. 7, we show the convergence of the two theorems with
the increasing MIMO dimensions. We set K’ = 4 and N =
32. Moreover we set M = 8 Ng = 8 and SNR = 8 dB.
The per-receive-antenna sum rate is shown as a function of Ny
in Fig. 7. It is seen that as the MIMO dimension grows, the
deterministic equivalents given by Theorems 1 and 2 converge
to the true rate.

Fig. 8 illustrates the per-receive-antenna sum rate as a func-
tion of the number of relays M. Weset K = 4, Ny = 8, Ng =
32, Ng = 8, and SNRR = &8dB. It is seen that both determin-
istic equivalents provide good approximations to the true rate.
Moreover, the rate increases as the number of relays increases,
although the rate of the increase is quite slow.
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B. Non-Asymptotic Results

For non-asymptotic analysis, we consider both single-cell and
multi-cell cases. The single-cell setup is the same as before. The
multi-cell setup is shown in Fig. 3, where there are No = 7
hexagonal cells with a BS at the center of each cell. The cell
radius is 10 meters and in each cell the relays are located on
a circle that is 5 meters from the BS. The users are randomly
located in different cells.

In Fig. 9 we plot the ranges of the constants ¢1,c2 and cg
according to (48)—(50) for a single-cell system. The number of
users in the cell is K = 40 and the number of relays in a cell
is M = 8. Moreover, Ngp = 8 and Ny = Np = 4. The space
above the curvy plane and below the flat plane is the region for
the constants. If we choose ¢; . ¢3 and ¢3 according to (53)—(55),
in Fig. 10, we plot the bound gap By — By, and the probability
in (45) as a function of q. It is seen that as g increases, the prob-
ability also increases, but the gap between the upper and lower
bounds becomes larger.
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Fig. 10. The bound gap By — DB, and the probability in (45) as a function of ¢.

In Fig. 11 we plot the upper and lower bounds on the sum rate
of a single-cell system with the corresponding probabilities. We
set M = 8, Ngp = 8, and Ny = Np = 4. According to Fig. 9
and Section IV, we set ¢ = 1 and choose ¢1, ¢2 and ¢3 according
to (53)—(55). The bounds corresponding to K = 40 and K = 60
are plotted in Fig. 11. In Fig. 12, with the same setup as that
in Fig. 11 and SNR = 8 dB, we plot the convergence of the
gap between the upper and lower bounds as a function of K. It
is seen that as K increases, the gap becomes smaller, i.e., the
bounds become tighter.

Finally, the per-cell sum rate performance for a multi-cell
system is shown in Fig. 13. The system parameters for each cell
are the same as those for Fig. 11. Comparing Figs. 11 and 13 it
is observed that the upper bound of the single-cell sum rate is
smaller than the lower bound of the multi-cell per cell sum rate
with the same number of users per cell. Hence by employing
joint processing in multi-cell systems, the per-cell sum rate can
be made larger than that in a single-cell system.
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VI. CONCLUSION

We have considered MIMO cellular networks with mul-
tiple relay stations deployed in each cell that help relay user
signals to the base stations by using the amplify-and-forward
strategy. We have obtained several deterministic expressions
for the uplink ergodic sum rate of such systems. In particular,
using the random matrix analysis tool, we have obtained two
deterministic sum rate expressions for the case of large MIMO
dimensions, with fixed or large number of users, respectively.
And by using the non-asymptotic analysis tool, we have ob-
tained tight upper and lower bounds on the sum rate for the
case of arbitrary MIMO dimensions and large number of users.
These deterministic sum rate expressions can be evaluated
given the system parameters such as the numbers of relays,
users, base stations, the numbers of antennas at the user, relay,
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Fig. 13. Upper and lower bounds on per-cell sum rate in a multi-cell system as
a function of SNR.

and base station, the locations of the users and relays, the
transmit precoding schemes employed, as well as the MIMO
channel correlation statistics. With these analytical expressions,
we can evaluate the sum rate of a single-cell or multi-cell net-
work without resorting to Monte Carlo simulations. Therefore
they can be useful tools for the design and analysis of relay-as-
sisted MIMO cellular networks.

APPENDIX A
PROOF OF THEOREM 2

In order to use the results in [22] and [23], we first transform
the entries of the 2N x K Ny matrix X in (33) into a two-
dimensional function pyx : [0,1)? — R defined as

px(x,y) = X(s,1), (85)

i s—1 -~ 5 t—1 t :
if N, <z < NG and Yoo <y< BNy - Then, according

to [22], [23], if Z satisfies the Lindeberg condition in (27), we
have DNB — D}k\rn with

.1 1
RB:a/l%[L+g/pﬂ%wUWM4dy
0 0
1 1
+/ log [1 +ap/ pz(w‘,y)V(y)dy] dx
0 0
o [ [ stV @V dsdyloge, 56)
Joo [(),1)2

where U () and V (y) form the unique solution to the following
fixed-point equations

1

U(x)

and

1+ ap fy ps(a,9)V (y)dy

1

Viy) =

1+ p fol ps(z, y)U(ﬂ:)dm.

We next express D7 in terms of 3.

87

(88)
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Using the definition of ps(z, y), we have

Dy,
KNy 2Ng i
Ny
Zlog 1+p229t/ ) U(z)dx
]VU t=1 ZNB
2Np

2N Z log
KNy 2Np

EDIPID

t=1 s=1

KNy -
14 ap Z s 7‘)/

v 77

INg

U(z)dx

ot
KN

X / V{y)dyloge.

Y KNy

(89)

Similarly we write (87)—(88) in terms of 3I:

U) 1
xr) = t 3
Ltap T2 B(s.0) [ 20 V(y)dy
‘?TU
(90)
1
and V(y) = e 1)
L+ p S S5 0) [T Ue)d
2Np
If we define
ug 2 /MB U(z)da (92)
Eay
and v 2 [ Viy)dy, (93)

and substitute them into (89) we obtain (36). Furthermore, if
we integrate over from on both sides of (90) and

integrate over y from -- wn- to KM on both sides of (91), and
use (92)—(93), then (90) and (91) can be transformed into (37)
and (38). Therefore Theorem 2 is proved.

27V - to 21\

APPENDIX B
PROOF OF THEOREM 3

The proof starts from the following lemma [24]
Lemma 1: 1f a matrix B satisfies

|BB — I|| < max(6,§%), (94)

for some § > 0, where || - || denotes the operator norm of a

matrix, then

1 _ (() < gIXllIl < IIldX < 1 + é (95)

Ir
Setting B = %, our goal is to find some 6 and calculate
the probability

P{||BBY — I|| > max(6,§%)}. (96)

Then we can find the bounds on the singular values of Z as
well as the probability that the singular values are constrained
within the bounds. In order to obtain this probability, we need
to explore the distributions of the entries of Z and Z g in (40).
We define A £ Z7 = [Ag Ag], where A¢ = Z§ and
Ap £ Z g It is obvious from (42) that the entries of Z ’G are
independent Gaussian random variables. The following lemma
characterizes the distribution of the entries of Z%, in (42)
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Lemma 2: The product of two independent zero-mean
Gaussianrandom variables is a sub-exponential random variable.
Proof: Assume W = W1 W,, where W, and W5 are inde-
pendent zero-mean Gaussian random variables with variances
vy and va respectively, so var{W} = v1vs. Thus we have for
any ¢ > 0

P{| W1iW2 [> ¢}
= 2P{W W, > ¢}

:4P{W2 > V%’Wl > 0}

=1 e (Gatm) v oo (o)
. 7

< 4'/0 \/%_vlexp [ (;{;2 + ZZ?)

m e <_ \/vq1vz>

ex 1—#.
<o (1 k)

According to the definition of sub-exponential random variables
in [24], we obtain Lemma 2. ]

By Lemma 2, the entries of ZE in (42) are linear combina-
tions of sub-exponential random variables. Then we can bound
the probability in (96) by exploring the decaying feature of the
pdfs of Z% and Z..

dwy

C0)

We have
1
|IBBY —I|| = HQKNT (AcAZ +AEA§) ol
1] 1
<3 BN ———Ag AL AEAH

< max, (‘ KNy HAC.'I:H2 - 1’
+ 1Azyll; -

zYeN
KN ) (98)

where || - ||2 denotes the I3-norm of a vector, and A/ denotes the
i—net of the unit sphere S”# ! which is a subset of V51
such that for every point zy € S Ne—1 e can find some point
z € N sothat ||z — zy/|s < . Note that (98) follows from
the fact that for the %-net of S¥5~1 and the operator norm of
any square matrix D, || D|| < 2 maxgen |(Dx, )| [24], where
{+,-) denotes the inner product of two vectors. Furthermore, the
cardinality of  satisfies | N |< 9% Moreover, we have
KNy

|Acz]); = Z | s |2, (99)
KNy
2
lAsylls = Y [ W (100)
k=1
where
JVB )
Oy 23 28t (s, k — ik Np)*z.,  (101)
s=1
JVB )
and \I!kéZZ};“(s,k—'IIkNU)*yS, (102)

s=1
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with iy = [NLJ — 1 and (-)* denoting the complex conjugate
operation. Because the entries of Z¢ are zero-mean Gaussian
variables and the entries of Zg are are the linear combina-
tion of zero-mean sub-exponential variables, it then follows that
®,. is the linear combination of Gaussian variables and W, is
the linear combination of sub-exponential variables. The Ho-
effding-type inequality and the Bernstein-type inequality char-
acterize the distribution of the linear combination of different
types of zero-mean random variables with decaying pdf [24]. In
particular, we have

2
P{| &4 [ g} < exp (1 - q—2> .,
(1-min (§2:2))
and P{| ¥, [> <cexp|1— min —
(1012 0} < o e

where ¢y, is the sub-Gaussian norm of the vector [Z (s, k —
ixNy),s = 1,..., Ng], given by

(103)

(104)

, , L

- ma,xm>illlp*§ ([E|Zg"+1(s, k—uNp)P)7 s (105)
s p>

whereas v is the sub-exponential norm of the vector

[Z3 % (s, k —ixNv),s = 1,..., Np], given by

P = max n1>1111p‘ ([E|ZE“+1(8, k— 'Ilk,NU)|P) v (106)
s pz

According to Lemma 2 and the definition of sub-Gaussian and

sub-exponential random variables [24], ¢ and 1% can be com-

puted as follows:

b = V2evar{ Z¢(1,k)}, (107)
var{Zg(1,k)}, (108)

where var{Zs(1,k)} and var{Zg(1,k)} are given by
(75)—(76). Thus P is a sub-Gaussian random variable and the
decaying rate of the pdf of Wy, is at least sub- exponential.

Define € £ max(§,6%) and § £ ¢3 iw\,‘: + \/T’
c3 is a constant that will be set later. If we set 6 in Lemma 1
in this way, we can find that ¢ is small when K is large, which
means the bounds become tighter as K increase. Furthermore,
from the later analysis, the probability in (96) becomes smaller

as K increases. We have (109)

and ¥ =c¢

where

1
P{| e Aol 1|+ | I Amal 1|2 ]
1 KNy .
<P S o2 -1) > =
= {( K]VU ; (| k| ) = 2)
1 KNy c
Ul |——— T, 1?2 —-1) > =
(KNU ;“ w7 1) —2)}
1 KNy .
=P<{|— b, 12 1) > -
{ KNo ;(I k| )| = 2}
1 KNy B
P|l—r U 2 -1 > = 109
+ {KNU];(I k| ) 2} (109)

In addition, when K — oo, for the tall matrices Ag and Ag we
have E{| ®; |*} — 1 and E{| ¥}, |*} — 1 [24], which means
| @5 |> —1and | ¥y, |2 —1 tend to zero-mean random variables.
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Since {®;} are sub-Gaussian, so {| ®; |? —1} are sub-ex-
ponential random variables. Therefore according to the Bern-
stein-type inequality,
KNy

1 €
p ®p P -1 > =
[ K K
< 2exp | —K Ny max <K4 K2 ) min(e, 62):|
i K K
= 2exp | —K Ny max ( ) 6 }
I K¢ K2

[ K K

< 2exp - max (K_é K—g) (2¢3N5 + ¢ )] . (110)

where K¢ is the sub-Gaussian norm of the vector [®;, k =

1,...,KNy], and
Kg = (2e3var?{Zs (1, k)}).

max

111
k=1,.. KN, (1)

Similarly by (104) and the Bernstein-type inequality, we have
KNy

1 €
PSl—r Uy, > =
[ K K _
< 2exp _—KNU max (K—fj7 K—E> min(e, \/e)]
[ K K
=2 exp -7K.Z\IYU max (K—-QE, K—E) 6:|
<2 - K K
e —max | —, —5
< 2exp _ ax K K2

x (c3/2K NNy + q\/KNU)} , (112)
where K g is the sub-exponential norm of the vector [V, k =
1,....KNy], and

Kg = 2var{ Zg(1,k)}).

max (e
k=1,..,KNy

(113)

We define cg 2

K'max(Kl4 , Af ).

| AN |< 9V7 . Therefore when we choose sufficiently large c3
satisfying

KIndX(K ,Iﬂ) and ¢g =
According to the feature of NV, we have

1 9 2Npg log9
c3 > 2max (\/ o8 B 08 ) (114)
]\/U CEp
we have
p L |
ma e
,yréfi KNy
el -1]) 2 ¢}

<| N2 {2exp [—Cg(chNB + qz)]
+ 2exp[—cg(cs V2K NNy + VK Npq)]}

< 2exp(—cpVENpg) +exp(—caq®)],  (115)
and
V2K Ny — 2c37/Np — V2q
< 54 < V2K Ny + 2¢37/N5 + V2. (116)

If the lower bound of (116) is positive, we can obtain (47). This
completes the proof.
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