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Abstract— Stability is a classical yet active research topic
for dynamical systems. Certain operators such as de-noising
filters, smoothing filters and many algorithms may be applied
iteratively. In many cases, they can be modelled as a complex
dynamical system. Due to the errors and noises in acquisition of
data, the stability of analysis results is vital to the validity of the
analysis. However, little is known about the stability of analysis
results in these situations. In this paper, we propose a method
for analyzing the stability under iterations of operator. First
we give the definition of stability under iterations of operator.
We model the dynamics as an complex dynamical system. We
introduce the concepts of Fatou and Julia set. We establish
the connection of stability to Fatou and Julia set. We define
different concepts of quasi-stability including asymptotical,
bounded quasi-stability, which generalize the notion of stability.
We provide the necessary and sufficient condition for quasi-
stability under iteration of affine operator. We present a few
results for the quasi-stability based on the concept of Fatou
and Julia Set. Finally, we provide the numerical example to
illustrate the theory.

I. INTRODUCTION

The stability of dynamical system is a classical yet still

active research area [1], [2], [3]. The Lyapunov stability

theorem provides the sufficient condition for solution of

differential equations [4]. Operators as de-noising filters,

smoothing filters and certain algorithms may be applied

iteratively in process of the data [5]. Naturally, the important

question that whether the analysis result is robust and stable

to the perturbations of the data rises in this situation. Due to

the noises and errors in acquisition of the data, the stability

issue under the iterations of operators can not be neglected.

However, because of the different assumptions of the model,

many classical result of stability can not be applied easily in

these cases.

The dynamical system in many of these situations may be

modelled as the iteration of a complex operator Φ : C
N →

C
N , where N ∈ N. The stability in this case is the issue

whether a small enough perturbation of initial point will end

up in a small change for the outcome under Φ◦n, i.e. n-th

iteration of Φ. The stability of this model is closely related

to the complex dynamics [6], [7], [8]. We will see later, the

concepts of Julia and Fatou set play an important role in

complex dynamics.

Signals are often represented in a discrete way by their

natures. In order to employ the signal processing techniques,

one need to map the symbolic signal into numerical domain.
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It is conceivable that different such mappings could lead

to contradictory conclusions. Interestingly, the stability in

this case is related to the mapping consistency problem [9].

The stability can be seen as an equivalence to the mapping

consistency problem under the iteration of operator.

In this paper, we propose an approach for analyzing many

stability problems encountered in signal processing where

we have iteration of certain operator. In Section II, we

provide the preliminaries for the paper. We first define the

stability and introduce the concepts of Fatou and Julia Set.

We introduce a few important properties of Fatou and Julia

set. We establish the connection between stability between

Fatou and Julia set. We also show the necessary and sufficient

condition for stability under iteration of affine operator. In

Section III, we introduce concepts of quasi-stability as a

generalization of stability and present several theoretical

results on quasi-stability. In particular, In Section IV, we

present experimental results which illustrate the theoretical

results in genomic signal processing. Finally, we provide a

brief summary and discussion of our results in Section V.

II. DYNAMICAL MODEL AND STABILITY

We model the operator as a complex operator (function).

Let Φ : C
N → C

N be a holomorphic (analytic) operator.

The input signal can be embedded as a point z in C
N . In

the case of the symbolic sequence, for example, a symbolic

data sequence {ai}n−1
i=0 , where ai ∈ A. The set A is the

alphabet. In order to apply the signal processing techniques,

we need to use a map f from An to C
N . For example, if

we have a mapping method f̃ : A �→ C
k, then it naturally

induces the map f : {ai}n−1
i=0 �→ z, z ∈ C

nk, where

([z]jk+1, [z]jk+2, ..., [z]jk+k)T = g(aj), j = 0, 1, ..., n − 1.

Therefore, for a given symbolic sequence and a mapping

method f , the corresponding numerical sequence is a point

in C
N . We denote this point as zf . We will call the collection

of iterations under function composition {Φ◦n}n=1 as the

dynamical system. In this paper we will assume Φ is a

polynomial, i.e. (Φ(z))i = Pi(z1, z2, ..., zN ), i = 1, ..., N ,

where Pi is a polynomial. Note that by Taylor’s theorem we

know that any holomorphic map can be approximated by

polynomials.

The stability issue is equivalent to the question that

whether small changes of the given input sequence will

cause a small changes for the outcome. It has many different

definitions. In this paper, we give the following definition of

stability:

Definition 1: An iuput z0 is (Lyapunov)-stable for the

dynamical system, if for any δ > 0, there exists ε > 0 such

that for any point z in the ball of radius ε, centered at z0 we



have

‖Φ◦n(z) − Φ◦n(z0)‖ < δ,∀n ∈ N (1)

In study of complex dynamics, the concepts of Fatou

and Julia set play a fundamental role. There are several

non-equivalent definitions of Fatou and Julia set in multi-

dimensional complex space [6], [7], [8]. We will use the

definition below. Before that, we first introduce the notion

of normality.

Definition 2 ([10]): A collection of holomorphic map F
is called normal if every infinite sequence of maps from F
either has a locally uniformly convergent subsequence or a

subsequence diverges locally uniformly, i.e., for any point,

there exists an open neighborhood such that the subsequence

converges or diverges uniformly on that open neighborhood.

Recall that a sequence of functions is locally uniformly

convergent means that for any point in the domain, there

exists an open neighborhood of that point such that the

sequence of functions converge uniformly in that neighbor-

hood.

Definition 3 ([6]): The domain of normality F of F =
{Φ◦n} is called Fatou set. Its complement

J = C
N\F (2)

is called Julia set.

We define the basin of infinity as set of all points which

have norms go to infinity under iteration.

The connected components of Julia (Fatou) set are called

Julia (Fatou) components.

We will see later the Julia set represents the chaotic be-

haved points and points in Fatou set show rational behavior.

We can show the following properties of Fatou and Julia set.

Proposition 1: A point z is in Fatou set if z is in the basin

of infinity B.

Proof: It is straightforward to see if z ∈ B, then there

exists a neighborhood Uz of z, such that

lim
n→∞ ‖Φ◦n(z)‖ → ∞,∀z ∈ Uz (3)

So we have z ∈ F .

Proposition 2: Fatou (Julia) component is invariant. i.e.

the operator maps one component onto another component.

Proof: It follows from the fact F = {Φ◦n} and F =
{Φ◦(n+1)} have the same domain of normality and Φ is

continuous.

For point z is in the basin of infinity, although theoretically

we can examine the stability, however, from computational

point of view, the point diverges very fast under polynomial

iterations. After a few rounds of iterations, the numerical

results will overflow. In this case, the stability or even

analysis result turns out to be meaningless. We show the

following results about the connection of stability to the

Fatou set.

Theorem 1: If z is not in basin of infinity, then z is stable

if and only if z is in Fatou set.

Proof: (sketch of proof) If z is stable, then F = {Φ◦n}
is eqi-continuous. Followed by Arzelà-Ascoli theorem [10],

we have z ∈ F .

Conversely, it is enough to show that if z is not stable,

we will have z ∈ J . If it is not stable, we have ε0 and

n(1) < n(2) < . . . such that for {Φ◦n(j)}j=1, ∃{zj} → z0,

we have

|Φ◦n(j)(zj) − Φ◦n(j)(z0)| > ε0 (4)

if z ∈ F , we have a neighborhood U of z, such that

{{Φ◦n(j)}} has a uniformly convergent subsequence. Let h
denote the limit. Taking limit for (4), we have

|h(zj) − h(z0)| > ε0 (5)

for j large enough. But this contradicts to g is continuous.

So z ∈ J .

From theorem 1, we see that Fatou set represents the good-

behaved points. On the contrary, for the input z in the Julia

set, no matter how small the perturbation the input has, it

will not result in arbitrary small changes for the output. In

this case, the analysis result may not be trust due to the

instability.

III. QUASI-STABILITY UNDER ITERATIONS

In this section, we generalize the notion of stability by

introducing the concepts of quasi-stability. We first introduce

different concepts of quasi-stability.

Definition 4: For the input z1 and z2, we say z1 and z2

are asymptotically quasi-stable to each other, if

lim
n→∞ ‖Φ◦n(z1) − Φ◦n(z2)‖ = 0 (6)

z1 and z2 are called M-boundedly quasi-stable, if

sup
n

‖Φ◦n(z1) − Φ◦n(z2)‖ < M. (7)

All the points which are quasi-stable with z will be called

quasi-stable class of z.

We have the following proposition, which shows quasi-

stability generalizes the notion of stability by allowing any

form of perturbation.

Proposition 3: The input z0 is stable, then for any δ > 0,

there exists an open neighborhood U , such that any z ∈ U
is δ-boundedly quasi-stable with z0.

Proof: It simply follows from the definition of stability.

If a point z is stable, then there always exists an open

neighborhood U of z such that any point in U is boundedly

quasi-stable to z. However, the converse is not true in

general.

We first investigate the simplest case where Φ is affine.

We show the following results for quasi-stability.

Theorem 2: If Φ(z) = Az + b, any input z is asymptot-

ically quasi-stable to each other, if and only if the spectral

radius ρ(A) < 1.

Any input z is boundedly quasi-stable to each other, if and

only if either ρ(A) < 1 or ρ(A) = 1 and all the eigenvalues

have index ≤ 1.

Proof: (Sketch of proof) If for any x and y, ‖Φ◦n(x)−
Φ◦n(y)‖ → 0 as n → ∞, then we have

lim
r→∞Ar = 0 (8)



Denote the n × n Jordan matrix with diagonal 0 as Jn.

Consider the Jordan canonical form of A.

UAU−1 = ⊕l
i=1 ⊕k

j=1 (λiImij + Jmij ) (9)

where mij is the size of (i,j) jordan block.

Using the matrix function [11], we have that

Ar = U−1(⊕l
i=1 ⊕k

j=1 (
mij−1∑

p=0

(
r

p

)
λr−kJp

mij
))U (10)

So we must have the necessary and sufficient condition

that ρ(A) < 1.

If we have any two maps are boundedly equivalent, then

we have

‖Ar‖ < M (11)

for any r.

Follow from (10), we have either ρ(A) < 1 or if for some

|λi| = 1, we must have there is only one dimensional Jordan

block for that λi, i.e. index(A) = 1 if ρ(A) = 1.

Though in applications, Euclidean metric is the most

widely used metric. However, it is often easier to work with

the Kobayashi metric [12] than the Euclidean metric for

investigating the quasi-stability.

For complex manifold M , one can construct a differential

metric FM : T (M) → R.

Definition 5: FM (ξx) := inf (1
r : ∃f : D(r) → M such

that f(0) = x and df( ∂
∂z )0 = ξx), where D(r) is the disk

centered at origin with radius r in complex plane. ∂
∂z is the

basis of differential.

Once we have this differential metric, we can construct a

pseudo metric called Kobayashi pseudo metric.

Definition 6: dK(x, y) := infγ {
∫ b

a
FM (γ̇(t))dt} where

γ : [a, b] → M is a piecewise C∞ curve connecting x and

y.

A complex manifold is called hyperbolic if the Kobayashi

pseudo metric dK is a metric. [12] is referred for the

details of construction and properties of Kobayashi metric

and hyperbolic manifold. One remarkable property for hyper-

bolic manifold under Kobayashi metric is the non-increasing

principle [12].

Theorem 3 (Non-increasing Principle): If M is hyper-

bolic, then for any holomorphic function Φ we have,

dK(Φ(x),Φ(y)) ≤ dK(x, y), x, y ∈ M (12)

Braverman and Yampolsky [13] showed the Julia set of

certain types of polynomial can not be computed by any

Oracle Turing Machine. If one of the point is in Julia set, it

may not computable to figure out the quasi-stable class of the

given input z. Also as we explained in previous chapter, from

computational point of view, inputs in the basin of infinity are

not necessary to be considered. We will classify the inputs

falling in all these situations as the computationally chaotic
class. Therefore, the only interesting case left would be if

both points are in Fatou set.

It is often that if one analysis results is constant multiple

of another, i.e. just a constant times another result, then the

two result is usually thought to contain the same information.

In this case we can define an equivalent class to eliminate

this duplication. We will consider the projective space P
N−1

of C
N − 0, where we define an equivalent relation such that

x ∼ y if x = cy where c �= 0. For the non-degenerate

homogenous polynomial from C
N to C

N , it natually rises

to map from P
N−1 to P

N−1 through the natural projection

map π : C
N − 0 → P

N−1. So from now on we will assume

the underline space is P
N−1.

Ueda showed the following important result about the Fa-

tou component for non-degenerate homogenous polynomial

[14].

Theorem 4: If Φ is non-degenerate homogenous polyno-

mial, i.e. Φ is homogenous and Φ−1(0) = 0, then its Fatou

component is hyperbolic.

We establish the following result about the equivalence

of Kobayashi metric to the Euclidean metric under certain

cases.

Theorem 5: If Φ is non-degenerate homogenous polyno-

mial, z1 and z2 are in Fatou set, if dK(z1, z2) < M then

z1 and z2 are M-boundedly quasi-stable under dK metric. In

particular if z1 and z2 are in the same Fatou component U
where Φ(U) = U and U is hyperbolic, then any two points

z1 and z2 in this Fatou component are boundedly quasi-stable

under Euclidean metric.

Proof: (Sketch of Proof) The first claim follows directly

from the definition. Using the property the Kobayashi metric

is continuous [12], we can show that the open subsets

with respect to the dK topology are also open in the

Euclidean topology. For the converse, for a point x, choose

a relatively compact neighborhood U of x, consider r =
miny∈∂U {dK(x, y)}, notice r > 0 so the r ball in dK

topology in contained in U . So we have the Kobayashi

topology is equivalent to Euclidean topology. Together with

the non-increasing principle we proved the second claim.

For the asymptotical quasi-stability, we show the following

result.

Theorem 6: If Φ is non-degenerate homogenous poly-

nomial, U is a Fatou component, and Φ(U) = U , if

dK(Φ(x),Φ(y)) < dK(x, y) for any distinct x, y ∈ U , then

there exists a unique fixed point in U and any z1 and z2 in

U are asymptotically quasi-stable.

Proof: (Sketch of proof) Choose a point p0, let pn =
Φ◦n(p0). If limn→∞ dK(p0, pn) = ∞, then ∀q0 ∈ B(p0, r),
by triangle inequality, we have dK(qn, p0) ≥ dK(pn, p0) −
r → ∞. Get a contradiction.

So we must have limn→∞ dK(p0, pn) < M . Therefore

∃n(1) < n(2) < · · · , such that pn(j) → p̂. Let gj =
Φ◦(n(j+1)−n(j)) and rj = dK(p̂, pn(j)). We have

dK(gj(p̂), pn(j+1)) ≤ rj (13)

dK(gj(p̂), p̂) ≤ rj + rj+1 (14)

If M is hyperbolic and paracompact then the collection of

holomorphic maps Hol(M, M) is a normal family [12]. Also

By Stone’s theorem that every metric space is paracompact

[15]. We have Hol(U,U) is a normal family.



Let g be the accumulation point of {gj}. So we have

g(p̂) = p̂ (15)

We have

f(p̂) = f(g((̂p))) = g(f(p̂)) (16)

but g has only one fix point, so f(p̂) = p̂.

It also follows easily from the strictly deceasing that the

fix point is an attracting point.

IV. EXPERIMENTAL RESULTS

We conduct the experiments on two DNA sequences

AD169 and rhodopsin gene sequence. We consider the

operator Φ as a non-linear square smoothing filter defined

as follow,

Φ(z1, z2, ..., zN ) = (
z1

2 + z2
2

2
, ...,

zi
2 + zi+1

2

2
, ...,

zN
2

2
)

(17)

The symbolic sequence is mapping according to the fol-

lowing map,

f̃(a) =

⎧⎪⎪⎨
⎪⎪⎩

1 if a = A
−1 if a = T

i if a = G
−i if a = C

(18)

This is one of the widely used mappings. We denote the

induced mapping point as zf .

In Fig. 1, we show the slices of Julia and Fatou set of Φ
at (z, 1, 1, ..., 1), (z, i, i, ..., i) and (z, 0.25+0.75i, ..., 0.25+
0.75i). Julia set commonly possesses a fractal shape and

could be connected or disconnected.

It can be shown the Fatou component U containing origin

satisfies all the assumptions in theorem 6. Therefore any

two points in U are quasi-stable. We consider the following

perturbed signal f̃ ′,

f̃ ′ = f̃ + Δz (19)

where Δz ∈ C. In Fig. 2, we show the slice of the Fatou

component U with zf at origin and Δz is varying in the ball

of radius 0.1, centered at 0. The white area is in the Fatou

component.

In Fig. 3, we show the asymptotically quasi-stable case.

The Euclidean distance for two arbitrarily chosen inputs

which are in the previous Fatou component U changes with

the number of iterations for human gene AD169 sequence.

As we can see the distance converges to 0 with the increase

of number of iterations.

In Fig. 4, we show the non-quasi-stable case. The Eu-

clidean distance for two non-quasi-stable inputs changes

with the number of iterations. One is in the previous Fatou

component U and the other is not. As we can see the distance

diverges with the increase of number of iterations.
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Fig. 3. Asymptotically quasi-stable case : The illustration of how Euclidean
distance for two inputs which are in the previous Fatou component U
changes with the number of iterations for human gene AD169 sequence.
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Fig. 4. Non-quasi-stable case: The illustration of how Euclidean distance
for two inputs, for which one is in the previous Fatou component U and the
other is not, changes with the number of iterations for human gene AD169
sequence.



(a) Julia Set and Fatou Set (b) Julia Set and Fatou Set (c) Julia Set and Fatou Set

Fig. 1. Slices of the Fatou and Julia Set of at (z, 1, 1, ..., 1), (z, i, i, ..., i) and (z, 0.25+0.75i, ..., 0.25+0.75i) respectively. The Julia set is represented
as the golden color. The red and black color represent the Fatou Set.

(a) Illustration of slice of the Fatou component U
for human gene AD169 sequence.

(b) Illustration of slice of the Fatou component U
for rhodopsin gene sequence.

Fig. 2. Quasi-stability analysis: (a), (b) show the slice of Fatou component U containing zf for human gene AD169 sequence and rhodopsin gene
sequence respectively. The origin represents zf and the central white area is in U .

V. CONCLUSION

In this paper, we provide a method for analyzing sta-

bility of a dynamical system of iterations of operator. We

give the definition of stability under iteration of operator.

We also establish the connection of stability to Fatou and

Julia set. We define different concepts of quasi-stability

including asymptotical and bounded quasi-stability, which

generalize the notion of stability. We provide the necessary

and sufficient condition for quasi-stability under iterations

of affine operator. We present a few results for the quasi-

stability based on the concepts of Fatou and Julia Set. The

Kobayashi metric is shown to be an important tool for

investigating the stability. Finally, we conduct an experiment

in genomic signal processing. We illustrate the stability and

quasi-stability of a smoothing filter. In the future, we will

study the dynamics where there is a composition of different

operators.
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