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ABSTRACT

Many previous results in genomic sequence analysis have
been derived based on the representation of genomic struc-
tures as numerical sequences. Various mapping strategies
have been proposed for the representation of genomic and
proteomic sequences. However, little is understood about
the effect of specific choices of numerical mappings on
the final analysis results. In fact, inconsistent numerical
mappings could have led to contradictory results in ge-
nomic sequence analysis. In this paper, we propose a
mathematical framework for analysis of the consistency in
representation and transformation of numerical mappings
of genomic sequences. We introduce strong and weak
correlation metrics to characterize consistency measures
among distinct numerical mappings. We derive sufficient
conditions to ensure consistency among different numer-
ical mappings. We present an important class of equiv-
alent transforms under the proposed consistency condi-
tions. We also derive a class of operators which is shown
to be equivalent under rotation of numerical mappings.
Finally, we conduct computer simulation experiments on
DNA sequences which demonstrate the theoretical results.

1. INTRODUCTION

Processing of genomic sequences as represented by map-
ping of symbolic data into numerical signals is a com-
monly used technique. First it is required to map the ge-
nomic symbols into the numerical domain. Many kinds of
mapping methods have been proposed for different areas.
For example, in DNA sequence analysis, there are many
mapping methods like mapping the original nucleotide se-
quence into one-dimensional numerical sequence [1]; in-
dicator sequences method [2]; simplex method [3]; method
emphasizing the periodic features for stationary symbolic
sequence [4]; Method for non-stationary sequences [5],
etc.

Each of the large number of numerical mappings used
for the representation of genomic sequences can be justi-
fied for various applications. Indeed, it is impossible to
determine which mapping is preferable. Furthermore, it
is conceivable that distinct mappings could lead to con-
tradictory conclusions. In fact, several contradictory re-
sults have arisen in the field of genomic sequence anal-
ysis. Most notably, the study of long-range correlations

in coding and non-coding DNA sequences has been con-
tested by several contradictory results [2, 6]. Investiga-
tion using a large DNA sequence database did not resolve
this dispute; in fact, the controversy grew even further [7].
Bouaynaya and Schonfeld [8] shed light on this dilemma
by demonstrating that genomic sequences are inherently
non-stationary and thus one of the reasons for the contra-
dictory conclusions stems from the use of stationary time-
series analysis tools. Moreover, they determined experi-
mentally that the results obtained remained invariant over
a large class of numerical mappings used for the represen-
tation of DNA sequences. Nonetheless, the experimen-
tal study conducted by Bouaynaya and Schonfeld in [8]
cannot be used to ascertain with certainty whether the dif-
ferent numerical mappings used for representation of ge-
nomic sequences contributed to the contradictory findings
reported in the literature [2, 6].

Therefore it is important to investigate the connections
between different mapping methods. Since if two differ-
ent mapping methods are shown to be incompatible, i.e.
for the same genomic sequence, it gives inconsistent anal-
ysis results. Then there is no reason to compare these
two analysis results. Moreover some seemingly different
methods may lead to similar analysis results.

In this paper, we provide a systematic method for ana-
lyzing the analysis results between different mappings. In
Section 2, we first propose a framework for analyzing dif-
ferent mapping methods under any analytic operator using
Taylor’s expansion. In Section 3, we provide an analy-
sis of the correlation between different mappings of a ge-
nomic sequence. In particular, we derive conditions for
strong equivalence captured by perfect correlation among
the distinct mappings. In Section 4, we explore a more
relaxed similarity between different mappings. Specifi-
cally, we provide conditions for weak equivalence which
is characterized by preservation of the local extrema of
the representation. In Section 5, we present experimen-
tal results which illustrate the significance of the proposed
equivalent mapping theory in genomic signal processing.
Finally, we provide a brief summary and discussion of our
results in Section 6.



2. SEQUENCE REPRESENTATION AND
TRANSFORMATION

Given {ai}N−1
i=0 , where ai ∈ A. The setA could be collec-

tion of nucleotides, amino acids, etc. f is a mapping from
A to Rn, i.e. f : ai 7→ xi, x ∈ Rn. After the mapping
we have a numerical sequence {xi}N−1

i=0 . T : xi 7→ yi is a
transformation from Rn to Rn. Φl is an analytic operator
on the numerical sequence and maps intoR parameterized
by l ∈ R. For example, Φl could be genomic correlation
function or Fourier transform, etc. We also assume that
Φl ∈ L2. We classify the problems as the following cases.

1. Given T , find out the consistency between Φl({xi}N−1
i=0 )

and Φl({T (xi)}N−1
i=0 ). Also find the largest class of

operator which is consistent under the given T .

2. Given f and Φl, if f and T ◦f are consistent for any
symbolic sequence {ai}N−1

i=0 . Find out the largest
class of such transformation T which preserves the
consistency.

The consistency means we require the results under
two different mappings to be similar in some extent. In
general Φl may not be linear. We will use Taylor’s expan-
sion to expand the operator. We vectorize the vector se-
quence {xi}N−1

i=0 xi ∈ Rn to a large vector x ∈ RNn×1.
Consider the Taylor’s expansion of the analytic operator.
Φl : RNn×1 → R. Unlike the common scalar form rep-
resentation of Taylor’s expansion. We shall present it in a
concise form involving tensor product. First we define the
gradient operator ∇ as

∇ =
(

∂
∂x1

∂
∂x2

. . . ∂
∂xNn

)T
(1)

Then the Taylor’s expansion of Φl at x0 can be repre-
sented as the following form,

Φl =
∞∑

i=0

1
i!

(∇iΦl)(x0)×i(X−x0)×i−1 · · ·×1(X−x0)

(2)
Where ×i is the ith-mode tensor product [9], and ∇i

is the ith-order gradient of Φl, which is defined as,

∇iΦl = Φl ×1 ∇×2 ∇×3 · · · ×i ∇ (3)

Furthermore, ∇0Φl is defined as Φl. For one and
terms, the ith-order gradient coincides with the traditional
definition of Gradient ∇Φl(x) and Hessian∇2Φl(x). So
we can rewrite the Taylor’s expansion as,

Φl = Φl(x0) +∇Φl(x0)T (x− x0)

+
1
2
(x− x0)T∇2Φl(x0)(x− x0)

+
∞∑

i=3

1
i!

(∇iΦl)(x0)×i (x− x0)×i−1 · · · ×1 (x− x0)

(4)

In order to characterize the consistency, we need to
have a metric to measure the consistency. In general, there

is no universal metrics. Various operators may have dif-
ferent metrics for different purposes. However, in most
situations, it is reasonable to require the results to be sim-
ilar in certain extent. Thus we propose the following two
kinds of metrics.

3. STRONG EQUIVALENCE: PERFECT
CORRELATION

We will use the correlation coefficient to characterize the
consistency. First we give the definition of the correlation
coefficient ρ.

Definition 1. Given {ai}N−1
i=0 , where ai ∈ A. f : ai 7→

xi, x ∈ Rn, T : xi 7→ yi is a transformation from Rn to
Rn, Φl is an operator on the numerical sequence. m(Φl)
is the mean value of the Φl in the space of parameter l.
The correlation coefficient is defined as

ρ =

∫
l
[Φl({xi}N−1

i=0 )−m(Φl({xi}N−1
i=0 ))]√∫

l
(Φl({xi}N−1

i=0 )−m(Φl({xi}N−1
i=0 )))2dl

[Φl({T (xi)}N−1
i=0 )−m(Φl({T (xi)}N−1

i=0 ))]dl√∫
l
(Φl({T (xi)}N−1

i=0 )−m(Φl({T (xi)}N−1
i=0 )))2dl

(5)

It is well known that the correlation coefficient is be-
tween [−1, 1]. The correlation coefficient can used as
a measure to characterize the similarity of two different
mappings. For a given T , if ρ = 1, then we say the trans-
formation T is a strongly equivalent transformation of the
map f for an operator and Φl({T (xi)}N−1

i=0 ) is a strong
equivalence of Φl({xi}N−1

i=0 ). When correlation coeffi-
cient is 1, it means the results under two mappings are the
same only up to a translation and scaling. That is the rea-
son why it is called “strongly equivalent”. Unfortunately,
there is no the universal equivalent transformation for any
operator. However, because of the importance of second-
order statistics, we shall emphasize on the second-order
operators. We consider the genomic correlation function,
which plays a vital role in genomic signal processing The
genomic correlation function of a sequence is defined as

rl =
1
N

N−1∑
n=0

xT (n)x(n− l) (6)

If ρ = 1, we have the following theorem on the transfor-
mation T for correlation function.

Theorem 1. If the transformation T is linear, then the
correlation coefficient ρ = 1 if and only if the transfor-
mation T can be represented as T (xi) = λRxi, R is an
orthogonal matrix and λ ∈ R.

Actually, this property not only holds for genomic cor-
relation function, but also for a large class of operators. In
order to show this class of operator, we first introduce the
definition of bounded linear operator.

Definition 2. Let (X, ‖ · ‖) be a normed space. An opera-
tor f is a bounded functional if f is linear and there exists
C > 0, such that |f | ≤ C‖x‖.



The bounded operator can be thought as the BIBO lin-
ear system in signal processing theory, which illustrates
the good-behaved operator. Then we have the following
theorem.

Theorem 2. Any bounded linear operator can only have
a trivial (scaled identity transformation) linear strongly
equivalent transformation. Moreover, given a bounded
operator whose Taylor’s expansion order is less than or
equal to two, then rotation is a linear strongly equivalent
transformation if and only if the operator does not have
the first-order component and the Hessian ∇2Φl(x) has
the form

∇2Φl(x) =




k11In×n k12In×n · · · k1NIn×n

k21In×n k22In×n · · · k2NIn×n

...
...

. . .
...

kN1In×n kN2In×n · · · kNNIn×n




(7)
, where kij ∈ R and kij = kji, ∀i 6= j.

Furthermore, using Theorem 2 we can also show that
rotation is a strongly equivalent transformation for genomic
Fourier analysis.

4. WEAK EQUIVALENCE: PRESERVATION OF
LOCAL EXTREMA

In previous section, we introduce a metric to measure the
similarity between two mappings for an operator. How-
ever, as we can see, the strong equivalence needs the result
to be “exactly” the same. While in many situations, we
do not care too much whether the result under two map-
ping strategies are exactly the same, i.e. the true numerical
value of the result, but the relative relation or the relative
trend in the result. For example, when we use correlation
function, in many cases, we only care where is the peak
point and valley point. Because this may suggest certain
pattern appears more frequently than any other one. In
these cases, what we really want is to preserve the local
maximal and minimal for different mapping. So we first
give the definition of local minimum and maximum pre-
serving similarity or for which in this paper what we call
weakly equivalent.

Definition 3. Given {ai}N−1
i=0 , where ai ∈ A. f : ai 7→

xi, x ∈ Rn, T : xi 7→ yi is a transformation from Rn to
Rn, Φl is an operator on the numerical sequence. We say
T is weakly equivalent, if for any l, any local minima or
maxima for Φl({xi}N−1

i=0 ) we have Φl({T (xi)}N−1
i=0 ) has

the same local minima or maxima respectively.

A few easy observations and results follow. By defini-
tion strong equivalence implies weak equivalence. More-
over, we have the following propositions to determine weak
equivalence.

Proposition 1. If Φl is twice differentiable with respect to
l, the T is weakly equivalent, if for any l, where
∂Φl({xi}N−1

i=0 )

∂l = 0, the following conditions hold

∂Φl({T (xi)}N−1
i=0 )

∂l
= 0 (8)

and

∂2Φl({xi}N−1
i=0 )

∂l2
· ∂2Φl({T (xi)}N−1

i=0 )
∂l2

≥ 0 (9)

If l ∈ Z, Then we have the following criterion to de-
termine weak equivalence.

Proposition 2. T is weakly equivalentfor an operator Φl

where l ∈ Z, if for any l, the following condition holds

(Φl({xi}N−1
i=0 )−Φl−1({xi}N−1

i=0 ))

· (Φl({T (xi)}N−1
i=0 )−Φl−1({T (xi)}N−1

i=0 )) ≥ 0 (10)

Again, as the importance of genomic correlation func-
tion, especially we’d like to investigate the weak equiva-
lent transformation for the genomic correlation function.
Then we have the following theorem showing that rotation
can be thought essentially as the only weakly equivalent
transformation for genomic correlation function.

Theorem 3. For a fix length sequence, any transforma-
tion which only brings small enough changes to the inner
product value under previous mapping will be a weakly
equivalent transformation for correlation function. How-
ever, if the length goes to infinity, then rotation (or scaled
rotation) is the only weakly equivalent transformation for
correlation function.

5. GENOMIC SEQUENCE ANALYSIS

We conduct the experiments on human gene AD169 se-
quences (GenBank accession no. X17403) and rhodopsin
gene sequence (GenBank accession no. U49742). We cal-
culate the correlation function as in (6) using the mapping,
which maps the A = {A, T, G, C} to the standard ba-
sis of R4. Then we use another mapping strategy, which
maps A to (−1, 0, 0, 0), T to (1, 0, 0, 0), G to (0, 1, 0, 0)
and C to (0,−1, 0, 0). These are two widely used map-
ping methods. In Fig. 1 (a), (c), we show the changing of
correlation coefficient between the two correlation results
with growth of DNA sequence length N and in (b), (d) we
show how the percentage of the points having same local
extremum property in two results grows with N . As our
theories point out, all these two metrics have a decreasing
trend with the grown of length N . The similarity between
the two results become less and less, which finally will
lead to a inconsistent analysis results.

In Fig. 2, we show the strong equivalence measure-
ments between the genomic power spectrum under the
previous two mapping methods. We can find that the power
spectrum results using these two different mappings have
the trends to be inconsistent. Since the genomic corre-
lation function and power spectrum are widely used and
pervasive in genomic sequences analysis, it suggests the
consistency problem should not never be neglected when
comparing genomic sequence analysis results.

6. CONCLUSION

In this paper, we presented a mathematical framework for
analysis of the consistency in representation and transfor-
mation of numerical mappings of genomic sequences. We
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Figure 1. (a), (b) shows the correlation coefficient and percentage of points preserving local extremes of the power spec-
trum change with growth of sequence length N for human gene AD169 sequences respectively using the first mapping.
(c) and (d) shows the strong and weak equivalence measurements respectively change with growth of sequence length N
for rhodopsin gene sequences using the second map.
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Figure 2. (a), (b) shows the correlation coefficient between the results of power spectrum using two different mappings
changing with growth of sequence length N for Human gene AD169 sequences and rhodopsin gene sequences respec-
tively.

introduced strong and weak correlation metrics for char-
acterization of consistency measures among distinct nu-
merical mappings. We derived sufficient conditions to
ensure consistency among different numerical mappings.
We presented an important class of equivalent transforms
under the proposed consistency conditions. We also de-
rived a class of operators which is shown to be equiva-
lent under rotation of numerical mappings. Finally, we
conducted computer simulation experiments on DNA se-
quences which demonstrate the theoretical results. Our
results suggest a possible reason for inconsistent and of-
ten contradictory results obtained in long-range correla-
tion analysis of DNA sequences and other areas in ge-
nomic analysis. The proposed approach for analysis of nu-
merical mappings can be extended to symbolic signal pro-
cessing for numerous applications beyond genomic and
proteomic sequences.
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