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ABSTRACT

The intervention in gene regulatory networks has been mod-

elled as the Markov decision process problem. However, this

approach only allows one external control, which is inade-

quate in many situations such as drug and gene therapies. In

this paper, we propose the non-cooperative stochastic game

model for intervention in the genetic regulatory networks as

the generalization of the Markov decision process approach

and formulate the intervention problem into solving the Nash

equilibrium. The definition of equilibrium has been proposed

and the existences for both infinite and finite horizon cases

have been proven. We provide the numerical example for

using non-cooperative stochastic game model on the mam-

malian cell cycle network. We also compare the results under

the Nash equilibrium and independent Markov decision pro-

cess approach.

Index Terms— Non-cooperative stochastic game, Gene

regulatory networks, Markov decision process.

1. INTRODUCTION

The genetic regulatory modeling is aimed to describe the dy-

namics of Gene networks, which is useful to identify potential

drug targets or alter the system evolutions in a desired man-

ner. It is well known that many diseases such as cancer and

tumor are due to the facts of cells improper proliferation or

misfunction of certain genes.

The probabilistic Boolean network (PBN) [1] is one the

widely used model for genetic regulatory modeling. The pur-

pose of intervention of the PBN is to reduce the probability

to visit the unwanted states. The PBN can be modeled as a

Markov chain model under certain assumptions [2]. The per-

turbed gene can be seen as the external control of the Markov

process. The Markov decision process (MDP) has been suc-

cessfully applied to the intervention of PBN [3] and the op-

timal control policy can be solved by dynamic programming

[4].

In these approaches of intervention in PBN, the perturbed

the genes are modeled as the control of the MDP and the op-

timal control policy is solved by maximizing the reward func-

tion. However, in many situations, multiple controls may be

desired to obtain various optimalities for different purposes.

For example, in drug or gene therapy, the patient may need to

be treated for various diseases simultaneously. In these situ-

ations, a single control is not adequate to describe the inter-

ventions. In multiple controls situation, the independent and

blind maximization of reward function for each control will

not achieve the original aim since the dynamics of the system

are bound together. Instead of solving a single optimization

problem as in MDP, proper concept of solution in these prob-

lems i.e. the Nash equilibrium is required to be defined. As

we will see later in the paper, the classical MDP falls into a

special case of the non-cooperative stochastic game (NCSG).

In this paper, we propose the NCSG model for control of

the genetic regulatory networks and formulate the interven-

tion problem into solving the Nash equilibrium. In section

2. we first provide the necessary background of the PBN and

introduce the NCSG model. In section 3, the MDP is shown

to be a special case of NCSG and the solving methods are

provided. In section 4, the definition of Nash equilibrium has

been proposed and the existences for both infinite and finite

horizon cases have been proven. In section 5, we provide the

numerical example for our NCSG model on the mammalian

cell cycle network. We also compare the results under the

Nash equilibrium and independent MDP (IMDP) method. Fi-

nally, we provide a brief summary and discussion of our re-

sults in Section 6.

2. THE MODELS

The PBN [1] consists of n nodes N = {xi}n
i=1, where

xi ∈ {0, 1} , a sequence of vector valued predictor func-
tions {fj}r

j=1. The xi represents the expression level of gene

with “0” meaning OFF and “1” meaning ON. The predic-

tor functions fj = (fj1, . . . , fjn) is a predictor of genes 1
through n., when the network j is selected. Note that the

Boolean network is deterministic if the predictor functions

are given. We have the switching probability q to describe the

randomness of the network. If the switch is on, the predic-

tor functions are chosen randomly according to probability

measure {pl}q
l=1. The vector x(t) = (x1(t), . . . , xn(t)) can

be seen as the binary expansion of {0, . . . , 2n − 1}, which is

called Gene-activity profile (GAP).
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For the intervention, we assume there are K controls. In

the context of Game theory, we refer them to be K players.

For each player k, it controls genes ak = {gk1, . . . , gkmk
}.

Therefore the action set for player k is Ak = {0, 1, . . . , 2mk−
1}. We denote a = ΠK

k=1ak and A = ΠK
k=1Ak. We also

assume the genes each player controls are disjoint. At every

epoch t the network updates and every player make decision

at the same time, i.e. each player only knows the his own

decision.

Let st = (x1(t), . . . , xn(t)) denote the network state. The

system can be modelled as the controlled Markov process.

The transition probability is defined as,

P{s′|s,a} := P{st+1 = s′|st = s,a1 = a(1), . . . ,ak = a(k)}
(1)

If the initial state s0 is given, then it fixed a stochastic pro-

cess. Let rk
t (st,a1, . . . ,ak) be the immediate reward function

for player k at epoch t. So we have the expected reward func-

tion Rk
t = Es0(r

k
t ). In this paper, we mainly focus on the

finite and infinite horizon discount average reward functions:

V k(L) :=
L∑

n=1

βn−1
k Rk

n (2)

V k :=
∞∑

n=1

βn−1
k Rk

n (3)

The policy πk = {πk1, πk2, . . . } for player k is a se-

quence of probability distributions such that πki is the deci-

sion distribution on the action set ak. A policy is pure, if all

the decisions in a policy are deterministic. If πki is indepen-

dent of time i, then the policy is stationary.

3. THE SINGLE PLAYER CASE

If we only have one player, i.e. K = 1, then the NCSG model

reduces to the Markov decision problem. Assume the cardi-

nality of the states is 2n and the cardinality of the action set is

2m. The finite horizon discount problem can be solved by the

following dynamic programming:

V (n) = max
A

{r(s, a) +
2m−1∑
s′=0

P{s′|s, a}V (n − 1)} (4)

In the infinite horizon case, the problem can be solved by

the following linear programming [7].

max
∑

s

∑2m−1
a=0 r(s, a)z(s, a)

subject to:∑
s

∑2m−1
a=1 {δ(s, s′) − βP{s′|s, a}}z(s, a) = 1

2n

z(s, a) ≥ 0

(5)

The optimal stationary policy is given by

π =
z�

∑
a z�

(6)

where z� is the solution of the linear programming (5).

4. THE NON-COOPERATIVE MULTIPLE PLAYERS
CASE

The NCSG is the generalization of MDP. In multi-player case,

although the goal for each player is to maximize his average

reward function, however, the independent IMDP solution for

each player is not adequate, i.e. each control works as if it

were the only control and treats the problem as the MDP. Be-

cause the reward function and transition probability are cou-

pled together by the decisions of all players.

Unlike the case in MDP, where one reward function is to

be maximized. In NCSG, all players are interested in maxi-

mizing their individual average reward functions. Therefore

a proper solution concept is needed to be defined. The con-

cept of Nash equilibrium in static game can be extended as

the equilibrium in NCSG.

Definition 1. A policy π� = (π1, . . . , πK) is the infinite hori-
zon discount Nash equilibrium (NE) point if the following in-
equality holds,

Vk(π�) ≥ Vk(μk, π�
−k) (7)

for any μk ∈ πk and any k ∈ K. The π−k denotes the policies
of all players except player k.

Similarly, we also have the definition for finite horizon

discount Nash equilibrium point.

Definition 2. A policy π� = (π1, . . . , πK) is the L-step finite
horizon discount Nash equilibrium (NE) point if the following
inequality holds,

Vk(L)(π�) ≥ Vk(L)(μk, π�
−k) (8)

for any μk ∈ πk and any k ∈ K. The π−k denotes the policies
of all players except player k.

The existence of infinite horizon discount equilibrium

point has been proven by A. Fink [5]. By using the Nash

theorem [6], we can also show the existence in finite horizon

case.

Lemma 1. Any policy πk is a convex combination of the pure
policies in finite horizon discount game.

Proof. We show the scheme to construct such convex combi-

nations for L = 2. First consider the πk1, it is straightforward

to see

πk1 =
M∑
i=1

c1
i μ

i
k1 (9)
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where
∑

i c1
i = 1. μi

k1 denotes the pure policy for player k
at epoch 1, which has probability 1 on i-th gene. Therefore

consider the policy

π(j) =
M∑
i=1

c1
i (μ

i
k1, μ

j
k1) (10)

. The first action in this policy π(j) is the same as πk1, the

second action is the pure policy which has probability 1 on

the j-th gene. So

(πk1, πk2) =
M∑

j=1

c2
jπ

(j) (11)

where
∑

i c2
i = 1. Therefore

(πk1, πk2) =
M∑

i,j=1

c2
i c

1
i (μ

i
k1, μ

j
k1) (12)

We see that the policy is convex combination of pure policies.

It follows by mathematical induction for arbitrary stage L.

Theorem 1. The finite horizon discount game has a Nash
equilibrium point.

Proof. For any given stage L and initial state s0, since the

states and actions sets are finite, there are finitely many pure

policies. By lemma 1, any policies is convex combination

of pure policies. Therefore the set of all policies is a closed,

bounded, and convex polyhedron. By Nash theorem [6], the

equilibrium exists for finite horizon discount game.

Under certain additional conditions, finding Nash equi-

librium could be solved by linear programming or non-linear

programming method. For example, if we have a two-player

zero-sum game, i.e. K = 2 and r1 = −r2. This game can be

interpreted as the matrix game and can be solved by Newton’s

method [7].

5. EXPERIMENTS

In this section, we conduct an experiment based on the mam-

malian cell cycle with a mutated phenotype. The cycle reg-

ulation is proposed in [8]. We order these genes as s =
{CycD,Rb, E2F, CycE,CycA,Cdc20, Cdh1, Ubc, CycB}.

The state sets {s} can be interpreted as the binary expansion

of {0, 1, . . . , 511}. Depending on the value of input CycD.

We have two constituent Boolean networks of the PBN. We

assume the two constituent networks have the same probabil-

ity and the probability of switching is 0.01. In Table 1, we

show the logic relation of all these genes.

Gene Predictors

CycD Input

Rb (CycD ∧ CycE ∧ CycA ∧ CycB)
E2F (Rb ∧ CycA ∧ CycB)

CycE (E2F ∧ Rb)
CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc)) ∨

(CycA ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc))
Cdc20 CycB

Cdh1 ((CycA ∧ CycB) ∨ Cdc20)
Ubc (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ Cdc20 ∨ CycA ∨

CycB)
CycB (Cdc20 ∧ Cdh1)

Table 1. Boolean functions of mammalian cell cycle.

We have the Rb and CycA genes as the two controls a1

and a2 of the PBN respectively. We also assume the following

reward functions.

r1 =

⎧⎨
⎩

10 if a1 = 0 and (CycD,Rb) �= (0, 0)
0 if a1 = 1 and (CycD,Rb) = (0, 0)
2 otherwise

(13)

r2 =

⎧⎨
⎩

9 if a2 = 0 and (CycD,CycA) �= (0, 0)
1 if a2 = 1 and (CycD,CycA) = (0, 0)
3 otherwise

(14)

In Fig. 1. we show the average rewards under two scenar-

ios. The first one is the PBN with only one control on gene

Rb by using the linear programming method in section 3. The

second scenario is the PBN has two control, but each control

employs IMDP method. We can find in the illustration that

the average reward under the second scenario is lower than

the first one. The reason is that under the second scenario,

the transition probability is coupled with the two controls to-

gether. In general the IMDP method with negligence of other

controls will not achieve the optimality. The Fig. 2. shows

the same situation for control on gene CycA.

In Fig. 3. and Fig. 4, we compare the average rewards un-

der the IMDP and the equilibrium. We can find in the illustra-

tions, the rewards under the equilibrium are generally better

than IMDP method case. Since the effects of other controls

have been taken into account and no player can profitably de-

viate by any of his own actions, which serves as a solution

concept under multiple players situation.

6. CONCLUSION

In this paper, we propose the NCSG model for intervention of

the genetic regulatory networks which extends previous MDP

model into multiple controls case. We formulate the interven-

tion problem into solving the Nash equilibrium. The defini-

tion of equilibrium has been proposed and the existences for
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Fig. 1. Illustrations of the average reward of the optimal in-

tervention for control a1 on gene Rb under the case only one

control and the average reward of the optimal intervention for

control on Rb using IMDP method with the other control a2

on CycA ignored.

0 5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

t

Average Reward with two controls using IMDP method
Average Reward with only one control

Fig. 2. Illustrations of the average reward of the optimal inter-

vention for control a2 on gene CycA under the case only one

control and the average reward of the optimal intervention for

control on CycA using IMDP method with the other control

a1 on Rb ignored.
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Fig. 3. Illustrations of the average reward of the optimal inter-

vention for control a1 on gene Rb under the two controls case

using IMDP method and the average reward of the optimal

intervention for control on CycA under equilibrium

both infinite and finite horizon cases have been provided. We

also provide the numerical example for using our proposed
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Fig. 4. Illustrations of the average reward of the optimal inter-

vention for control a2 on CycA under the two controls case

using IMDP method and the average reward of the optimal

intervention for control on Rb under equilibrium

NCSG model on the mammalian cell cycle network.
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