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ABSTRACT

Correlated equilibria are a generalization of Nash equilibria
that permit agents to act in a correlated manner and can there-
fore, model learning in games. In this paper we define a
special class of correlated equilibria that have hierarchical
structure based on the factor graph. Such factor graph-based
structural equilibria are more general than Nash equilibria and
can model constrained dependencies than general correlated
equilibria. We provide the numerical example for using non-
cooperative stochastic game model on the gene regulatory
network under three solution concepts.

Index Terms— Non-cooperative stochastic game, Factor
graph-based structural equilibrium, Correlated equilibrium.

1. INTRODUCTION

Stochastic dynamical games have applications in cognitive ra-
dio systems, sensor networks, defense networks, gene regula-
tory network. [1, 2, 3, 4]. Although widely used, the Nash
equilibrium has two disadvantages: The existence of Nash
equilibrium requires use of fixed point theorems, and in gen-
eral there are no provably convergent algorithms to a Nash
equilibrium. Second, Nash equilibria assume that agents act
independently, this is unrealistic in learning where agents in-
teract with the environment and are therefore correlated. Hart
and Mas-Colell observe in [5] that for most simple adaptive
procedures, “... there is a natural coordination device: the
common history, observed by all players. It is thus reasonable
to expect that, at the end, independence among players will
not obtain.” Harsanyi showed examples whose Nash equilib-
ria are not reasonable even when they are unique [6].

Aumann proposed another solution concept called corre-
lated equilibrium [5, 7], which generalizes the Nash equilib-
rium. The correlated equilibrium can be viewed as the re-
sult of Bayesian rationality, which can be interpreted as the
distribution of play instruction given to players by some ref-
eree whose joint distribution is known to all. From a practical

view, the correlated equilibrium can be argued as the most
relevant solution concept.

However, in many signal processing applications, the
corelated equilibrium could be too “broad”. The feasible set
comprises of many cases which do not fit the true rationale.
The true correlations among the players could be neglected
for the solutions.

In this paper we model the correlations among the players
as a factor graph. Factor graphs are widely used in statisti-
cal signal processing. For example in LDPC code, Markov
random field, etc [8, 9]. Since factor graphs are a useful
representation of constrained dependencies amongst random
variables, there is strong motivation to exploit factor graph
structures in correlated equilibria in games. A factor graph is
a bipartite graph representing the factorization of a function.
In the case of dynamic game, the function is the joint distri-
bution of the policies. As a graphical model, the dependence
relations among random variables are denoted as a graph. The
Markov network and Bayesian can be presented by the factor
graph [9].

In this paper, we propose a new solution concept called
factor graph-based structural equilibria which is a subclass of
correlated equilibrium. The advantage of such a factor graph
corelated equilibrium is that it allows modeling of constraints
in the dependencies of agent behavior in the game. In section
2. we first provide the necessary background of the stochastic
game and introduce the correlated equilibrium model. In sec-
tion 3, We define the factor graph-based structural equilibria
and illustrate some of its properties. In section 4, we provide
the numerical example as gene regulatory network. Finally,
we provide a brief summary and discussion of our results in
Section 5.

2. NASH EQUILIBRIUM AND CORRELATED
EQUILIBRIUM

We consider a Markovian dynamical game consists of state
spaces St = {si}n

i=1 at each time index t. We assume there



are K players (agents). For each player k, it chooses action
from its action set Ak(s). We denote a = ΠK

k=1ak and A =
ΠK

k=1Ak. At every epoch t the network updates and every
player make decision at the same time.

Let st denote the state of the system at time t. The sys-
tem evolves as a controlled Markov process with transition
probability,

P{s′|s,a} := P{st+1 = s′|st = s,a1 = a(1), . . . ,ak = a(k)}
(1)

In this paper, we always assume the dynamical game is of
finite states and finite action sets. Notice that the transition
probability of a Markovian dynamical game depends on the
actions of all K players. The policy πk = {πk1, πk2, . . . } for
player k is a sequence of probability distributions such that
πki is the decision distribution on the action set Ak. A policy
is pure, if all the decisions in a policy are deterministic. If
πki is independent of time i, then the policy is stationary. If
the initial state s0 is given, then it fixed a stochastic process.
Let rk

t (st,a1, . . . ,ak) be the immediate reward function for
player k at epoch t. So we have the expected reward function
Rk

t = Es0(rk
t ). In this paper, we mainly focus on the finite

and infinite horizon discount average reward functions. For a
give policy π, they are defined as,

V L
k (π) :=

L∑
n=1

βn−1
k Rk

n (2)

Vk(π) :=
∞∑

n=1

βn−1
k Rk

n (3)

Here β ∈ [0, 1) denotes the economic discount factor. The
Corelated equilibrium and Nash equilibrium in the stochastic
game are defined as follows,

Definition 1. A policy π� = (π1, . . . , πK) is a Correlated
equilibrium point if the following inequality holds,

Vk(π�) ≥ Vk(μk, π�
−k) (4)

for any μk ∈ πk and any k ∈ K . The π−k denotes the policies
of all players except player k.

For a correlated equilibrium point π, if we have π =
ΠK

k=1πk, then π is called a Nash equilibrium.

We denote collection of all the correlated equilibria as
CE, the Nash equilibria as NE.

Remark 1. The set of Nash equilibria belongs to the set of
correlated equilibria. Therefore existence of NE implies exis-
tence of CE. But in general the converse is not true.

3. THE FACTOR GRAPH-BASED STRUCTURAL
EQUILIBRIUM

Although the correlated equilibrium allows for arbitrary de-
pendencies of the elements of π, in many situations, we wish

Fig. 1. Factor graph of the case player 1 to k−2 are correlated
and independent of player k − 1 and k

to specify the constraints on dependencies among different
players. We need more refined description to model the con-
straints of the these dependencies. For this reason we intro-
duce the Factor Graph-based Structural Equilibria (FGSE).

The desired constraint on the dependencies is represented
by a factor graph. For example, we may allow certain groups
of players to be correlated. Among the correlated players,
they may “cooperate” in some sense to achieve better out-
come. For the joint distribution we could have the following
decomposition using the Bayes’ rule.

P(x1, ..., xk) = P(x1, ..., xk−1|xk)P(xk) (5)

= P(x1, ..., xk−2|xk−1, xk)P(xk−1|xk)P(xk)
= · · ·

For example if we know player 1 to k − 2 are correlated
and independent of player k − 1 and k, then we have the fol-
lowing decomposition.

P(x1, ..., xk) = P(x1, ..., xk−2)P(xk−1, xk) (6)

Or we could represent it in a factor graph as in Fig. 1.
We first give the definition of the factor graph-based struc-

tural equilibrium.

Definition 2. Given the factor graph of the joint distribution.
Let π be a probability measure on ΠK

k=1Ak. F be collection
of all distribution having the given factor graph. The any pol-
icy in CE ∩ F is called factor graph-based structural equi-
librium. We denote collection of all the factor graph-based
structural equilibrium as FGSE

As we can see from the factor graph structure, we have the
hierarchy of different levels of equilibrium. It is easy to have
the following proposition for the factor graph-based structural
equilibria.

Proposition 1. NE ⊆ FGSE ⊆ CE. NE = FGSE holds
when π = ΠK

k=1πk. FGSE = CE holds when we have the
trivial decomposition.



Gene Predictors
CycD Input

Rb (CycD ∧ CycE ∧ CycA ∧ CycB)
E2F (Rb ∧ CycA ∧ CycB)

CycE (E2F ∧ Rb)
CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc)) ∨

(CycA ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ Ubc))
Cdc20 CycB

Cdh1 ((CycA ∧ CycB) ∨ Cdc20)
Ubc (Cdh1) ∨ (Cdh1 ∧ Ubc ∧ Cdc20 ∨ CycA ∨

CycB)
CycB (Cdc20 ∧ Cdh1)

Table 1. Boolean functions of mammalian cell cycle.

Proof. The first claim follow from definition of FGSE and
remark 1. When we have fully decomposition the NE corre-
sponds to leaves of the factor graph. When we have trivial
decomposition the only root corresponds to the CE.

4. CASE STUDY: GENE REGULATORY NETWORKS

The Stochastic game model with Nash equilibrium as solu-
tion concept has been applied to the gene regulatory network
which is modelled as a probability Boolean network (PBN)
[10]. The interactions of the regulations can be viewed as
external controls on the transition probability [4].

In this section, we illustrate the factor graph-based struc-
tural equilibrium in an example comprising of the mam-
malian cell cycle with a mutated phenotype. The cycle
regulation is proposed in [11]. We order these genes as s =
{CycD, Rb, E2F, CycE, CycA, Cdc20, Cdh1, Ubc, CycB}.
The state sets {s} can be interpreted as the binary expansion
of {0, 1, . . . , 511}. Depending on the value of input CycD.
We have two constituent Boolean networks of the PBN. We
assume the two constituent networks have the same probabil-
ity and the probability of switching is 0.01. In Table 1, we
show the logic relation of all these genes.

We have the Rb, CycA and Ubc genes as the three controls
a1, a2 and a3 of the PBN respectively. We also assume the
following reward functions.

r1 =

⎧⎨
⎩

10 if a1 = 0 and (CycD, Rb, Ubc) = (0, 0, 0)
0 if a2 = 1 and (CycD, Rb, Ubc) �= (0, 0, 0)
2 otherwise

(7)

r2 =

⎧⎨
⎩

9 if a2 = 0 and (CycD, CycA, Ubc) �= (0, 0, 0)
1 if a3 = 1 and (CycD, CycA, Ubc) = (0, 0, 0)
3 otherwise

(8)

r3 =

⎧⎨
⎩

5 if a3 = 0 and (CycD, CycA, Ubc) �= (0, 0, 0)
1 if a3 = 1 and (CycD, CycA, Ubc) = (0, 0, 0)
0 otherwise

(9)
We consider the following decomposition of the joint dis-

tribution
P(x1, x2, x3) = P(x1)P(x2, x3) (10)

In Fig. 2, Fig. 3 and Fig. 4, we show the average reward
for three players under the Nash equilibrium, Correlated equi-
librium and Factor graph-based structural equilibrium.

For player 1, we can see the NE behaves best among the
three solution concepts, FGSE is better than CE. The intuitive
reason behind this is that based on the assignments of the re-
ward function, the reward for player 1 is contradictory to the
other two players. The NE corresponds to the most “indepen-
dent” case. In this case, player 2 and 3 do not work together
in some sense. When in CE and FGSE, the player 2 and 3 are
allowed to be correlated which result in the lower reward for
player 1.

For player 2 and 3, we can see the CE and FGSE perform
better than NE case. Since in the correlated case, the two
players are allowed to “cooperate” to achieve better rewards
than the NE case. Meanwhile the FGSE is better than CE. Be-
cause we constrain the specific dependencies structure by the
factor graph, which will provide better result than CE case.

From the numerical experiment, we can see the FGSE
captures more than the CE case if the correlations among the
players are specified. The rewards for all the players are more
relevant to the dependencies information provided by its fac-
tor graph.
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Fig. 2. The average reward for player 1 under NE, CE, FGSE

5. CONCLUSION

In this paper, we propose a new solution concept called factor
graph-based structural equilibria which captures more infor-
mation than the Nash equilibrium. It also refines the solution
set defined by the correlated equilibrium by combining the
specified correlation information. The relationship of factor
graph-based structural equilibria to the Nash equilibria and
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Fig. 3. The average reward for player 2 under NE, CE, FGSE
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Fig. 4. The average reward for player 3 under NE, CE, FGSE

Correlated equilibria has been shown. The FGSE as a solu-
tion concept fills the gap in NE and CE. The numerical exam-
ple on gene regulatory network shows that FGSE is shown to
provide more rational results for the given factor graph of the
joint distribution.
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