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Abstract—We investigate connections between information-
theoretic and estimation-theoretic quantities in vector Poisson
channel models. In particular, we generalize the gradient of
mutual information with respect to key system parameters from
the scalar to the vector Poisson channel model. We also propose,
as another contribution, a generalization of the classical Bregman
divergence that offers a means to encapsulate under a unifying
framework the gradient of mutual information results for scalar
and vector Poisson and Gaussian channel models. The so-called
generalized Bregman divergence is also shown to exhibit various
properties akin to the properties of the classical version. The
vector Poisson channel model is drawing considerable attention
in view of its application in various domains: as an example,
the availability of the gradient of mutual information can be
used in conjunction with gradient descent methods to effect
compressive-sensing projection designs in emerging X-ray and
document classification applications.

I. INTRODUCTION

There has been a recent emergence of intimate connections
between various quantities in information theory and estima-
tion theory. The perhaps most prominent connections reveal
the interplay between two notions with operational relevance
in each of the domains: mutual information and conditional
mean estimation.

In particular, Guo, Shamai and Verdú [1] have expressed the
derivative of mutual information in a scalar Gaussian channel
via the (non-linear) minimum mean-squared error (MMSE),
and Palomar and Verdú [2] have expressed the gradient of
mutual information in a vector Gaussian channel in terms of
the MMSE matrix. The connections have also been extended
from the scalar Gaussian to the scalar Poisson channel model,
which has been ubiquitously used to model optical communi-
cations [3], [4]. Recently, parallel results for scalar binomial
and negative binomial channels have been established [5],
[6]. Inspired by the Lipster-Shiryaev formula [7], it has been
demonstrated that it is often easier to investigate the gradient
of mutual information rather than mutual information itself [3].
Further, it has also been shown that the derivative of mutual
information with respect to key system parameters also relates
to the conditional mean estimator [3].

This paper also pursues this overarching theme. One of the
goals is to generalize the gradient of mutual information from
scalar to vector Poisson channel models. This generalization is
relevant not only from the theoretical but also from the practi-
cal perspective, in view of the numerous emerging applications

of the vector Poisson channel model in X-ray systems [8]
and document classification systems (based on word counts)
[9]. The availability of the gradient then provides the means
to optimize the mutual information with respect to specific
system parameters via gradient descent methods.

The other goal is to encapsulate under a unified framework
the gradient of mutual information results for scalar Gaussian
channels, scalar Poisson channels and their vector counter-
parts.

This encapsulation, which is inspired by recent results that
express the derivative of mutual information in scalar Poisson
channels as the average value of the Bregman divergence
associated with a particular loss function between the input
and the conditional mean estimate of the input [10], is possible
by constructing a generalization of the classical Bregman di-
vergence from the scalar to the vector case. This generalization
of Bregman divergence appears to be new to the best of our
knowledge. The gradients of mutual information of the vector
Poisson model and the vector Gaussian model, as well as the
scalar counterparts, are then also expressed - and akin to [10]
- in terms of the average value of the so called generalized
Bregman divergence associated with particular (vector) loss
function between the input vector and the conditional mean
estimate of the input vector.

We also study in detail various properties of the generalized
Bregman divergence: the properties of the proposed divergence
are shown to mimic closely those of the classical Bregman
divergence.

The generalized Bregman divergence framework is of inter-
est not only from the theoretical but also the practical stand-
point: for example, it has been shown that re-expressing results
via a Bregman divergence can often lead to enhancements to
the speed of various optimization algorithms [11].

This paper is organized as follows: Section II introduces
the channel model. Section III derives the gradient of mutual
information with respect to key system parameters for vector
Poisson channel models. Section IV introduces the notion of a
generalized Bregman divergence and its properties. Section V
re-derives the gradient of mutual information of vector Poisson
and Gaussian channel models under the light of the proposed
Bregman divergence. A possible application of the theoretical
results in an emerging domain is succintly described in Section
VI. Section VII concludes the paper.



II. THE VECTOR POISSON CHANNEL

We define the vector Poisson channel model via the random
transformation:

P (Y |X) =

m∏
i=1

P (Yi|X) =

m∏
i=1

Pois ((ΦX)i + λi) (1)

where the random vector X = (X1, X2, . . . , Xn) ∈ Rn+
represents the channel input, the random vector Y =
(Y1, Y2, . . . , Ym) ∈ Zm+ represents the channel output, the
matrix Φ ∈ Rm×n+ represents a linear transformation whose
role is to entangle the different inputs, and the vector λ =
(λ1, λ2, . . . , λm) ∈ Rm+ represents the dark current. Pois (z)
denotes a standard Poisson distribution with parameter z.

This vector Poisson channel model associated with arbitrary
m and n is a generalization of the standard scalar Poisson
model associated with m = n = 1 given by [3], [10]:

P (Y |X) = Pois(φX + λ) (2)

where the scalar random variables X ∈ R+ and Y ∈ Z+ are
associated with the input and output of the scalar channel,
respectively, φ ∈ R+ is a scaling factor, and λ ∈ R+ is
associated with the dark current.1

The generalization of the scalar Poisson model in (2) to the
vector one in (1) offers the means to address relevant problems
in various emerging applications, most notably in X-ray and
document classification applications as discussed in the sequel
[9], [12].

The goal is to define the gradient of mutual information
between the input and the output of the vector Poisson channel
with respect to the scaling matrix, i.e.

∇ΦI(X;Y ) = [∇ΦI(X;Y )ij ] (3)

where ∇ΦI(X;Y )ij represents the (i, j)-th entry of the matrix
∇ΦI(X;Y ), and with respect to the dark current, i.e.

∇λI(X;Y ) = [∇λI(X;Y )i] (4)

where ∇λI(X;Y )i represents the i-th entry of the vector
∇λI(X;Y ).

We will also be concerned with drawing connections be-
tween the gradient result for the vector Poisson channel and
the gradient result for the Gaussian counterpart in the sequel.
In particular, we will consider the vector Gaussian channel
model given by:

Y = ΦX +N (5)

where X ∈ Rn represents the vector-valued channel input,
Y ∈ Rm represents the vector-valued channel output, Φ ∈
Rm×n represents the channel matrix, and N ∼ N (0, I) ∈ Rm
represents white Gaussian noise.

It has been established that the gradient of mutual informa-
tion between the input and the output of the vector Gaussian

1We use – except for the scaling matrix and the scaling factor – identical
notation for the scalar Poisson channel and the vector Poisson channel. The
context defines whether we are dealing with scalar or vector quantities.

channel model in (5) with respect to the channel matrix obeys
the simple relationship [2]:

∇ΦI(X;Y ) = ΦE, (6)

where

E = E
[
(X − E(X|Y ))(X − E(X|Y ))T

]
(7)

denotes the MMSE matrix.

III. GRADIENT OF MUTUAL INFORMATION FOR
VECTOR POISSON CHANNELS

We now introduce the gradient of mutual information with
respect to the scaling matrix and with respect to the dark
current for vector Poisson channel models. In particular, we
assume that the regularity conditions necessary to interchange
freely the order of integration and differentiation hold in the
sequel, i.e., order of the differential operators ∂

∂Φij
, ∂
∂λi

and
the expectation operator E(·). 2

Theorem 1. Consider the vector Poisson channel model in (1).
Then, the gradient of mutual information between the input
and output of the channel with respect to the scaling matrix
is given by:

[∇ΦI(X;Y )ij ] =
[
E [Xj log((ΦX)i + λi)]

− E [E[Xj |Y ] logE[(ΦX)i + λi|Y ]]
]
,
(8)

and with respect to the dark current is given by:

[∇λI(X;Y )i] =
[
E[log((ΦX)i + λi)]

− E[logE[(ΦX)i + λi|Y ]]
]
. (9)

irrespective of the input distribution provided that the regular-
ity conditions hold.

It is clear that Theorem 1 represents a multi-dimensional
generalization of Theorems 1 and 2 in [3]. The scalar result
follows immediately from the vector counterpart by taking
m = n = 1.

Corollary 1. Consider the scalar Poisson channel model in
(2). Then, the derivative of mutual information between the
input and output of the channel with respect to the scaling
factor is given by:

∂

∂φ
I(X;Y ) =E [X log((φX) + λ)]

− E [E[X|Y ] logE[φX + λ|Y ]] , (10)

and with respect to the dark current is given by:

∂

∂λ
I(X;Y ) =E[log(φX + λ)]

− E[logE[φX + λ|Y ]]. (11)

irrespective of the input distribution provided that the regular-
ity conditions hold.

2We consider for convenience natural logarithms throughout the paper.



It is also of interest to note that the gradient of mutual
information for vector Poisson channels appears to admit an
interpretation akin to that of the gradient of mutual information
for vector Gaussian channels in (6) and (7) (see also [2]):
Both gradient results can be expressed in terms of the average
of a multi-dimensional measure of the error between the
input vector and the conditional mean estimate of the input
vector under appropriate loss functions. This interpretation
can be made precise – as well as unified – by constructing
a generalized notion of Bregman divergence that encapsulates
the classical one.

IV. GENERALIZED BREGMAN DIVERGENCES:
DEFINITIONS AND PROPERTIES

The classical Bregman divergence was originally con-
structed to determine common points of convex sets [13]. It
has been discovered later the Bregman divergence induces
numerous well-known metrics and has a bijection to the
exponential family [14].

Definition 1 (Classical Bregman Divergence [13]). Let F :
Ω → R+ be a continuously-differentiable real-valued and
strictly convex function defined on a closed convex set Ω. The
Bregman divergence between x, y ∈ Ω is defined as follows:

DF (x, y) := F (x)− F (y)− 〈∇F (y), x− y〉 . (12)

Note that different choices of the function F induce different
metrics. For example, Euclidean distance, Kullback-Leibler
divergence, Mahalanobis distance and many other widely-
used distances are specializations of the Bregman divergence
associated with different choices of the function F [14].

There exist several generalizations of the classical Bregman
divergence, including the extension to functional spaces [15]
and the sub-modular extension [16]. However, such general-
izations aim to extend the domain rather than the range of the
Bregman divergence. This renders such generalizations unsuit-
able to problems where the “error” term is multi-dimensional
rather than uni-dimensional, e.g. the MMSE matrix in (7).

We now construct a generalization that extends the range of
a Bregman divergence from scalar to matrix spaces (viewed as
multi-dimensional vector spaces) to address the issue. We start
by reviewing several notions that are useful for the definition
of the generalized Bregman divergence.

Definition 2 (Generalized Inequality [17]). Let F : Ω →
Rm×n be a continuously-differentiable function, where Ω ∈ Rl
is a convex subset. Let K ⊂ Rm×n be a proper cone, i.e., K
is convex, closed, with non-empty interior and pointed. We
define a partial ordering �K on Rm×n as follows:

x �K y ⇐⇒ y − x ∈ K, (13)

x ≺K y ⇐⇒ y − x ∈ int(K), (14)

where int(·) denotes the interior of the set. We write x �K y
and x �K y if y �K x and y ≺K x, respectively.

We define F to be K-convex if and only if:

F (θx+ (1− θ)y) �K θF (x) + (1− θ)F (y) (15)

for θ ∈ [0, 1].
We define F to be strictly K-convex if and only if:

F (θx+ (1− θ)y) ≺K θF (x) + (1− θ)F (y) (16)

for x 6= y and θ ∈ (0, 1).

Definition 3 (Fréchet Derivative [18]). Let V and Z be
Banach spaces with norms ‖ · ‖V and ‖ · ‖Z , respectively,
and U ⊂ V be open. F : U → Z is called Fréchet
differentiable at x ∈ U , if there exists a bounded linear
operator DF (x)(·) : V → Z such that

lim
‖h‖V→0

‖F (x+ h)− F (x)−DF (x)(h)‖Z
‖h‖V

= 0. (17)

DF (x) is called the Fréchet derivative of F at x.

Note that the Fréchet derivative corresponds to the usual
derivative of matrix calculus for finite dimensional vector
spaces. However, by employing the Fréchet derivative, it
is also possible to make extensions from finite to infinite
dimensional spaces such as Lp spaces.

We are now in a position to offer a definition of the
generalized Bregman divergence.

Definition 4. Let K ⊂ Rm×n be a proper cone and Ω be
a convex subset in a Banach space W . F : Ω → Rm×n
is a Fréchet-differentiable strictly K-convex function. The
generalized Bregman divergence DF (x, y) between x, y ∈ Ω
is defined as follows:

DF (x, y) := F (x)− F (y)−DF (y)(x− y), (18)

where DF (y)(·) is the Fréchet derivative of F at y.

This notion of a generalized Bregman divergence is able
to incorporate various previous extensions depending on the
choices of the proper cone K and the Banach space W . For ex-
ample, if we choose K to be the first quadrant (all coordinators
are non-negative), we have the entry-wise convexity extension.
If we choose K to be the space of positive definite bounded
linear operators, we have the positive definiteness extension.
By choosing W to be an Lp space, then the definition is similar
to that in [15].

The generalized Bregman divergence also inherits various
properties akin to the properties of the classical Bregman
divergence, that has led to its wide utilization in optimization
and computer vision problems [11], [12].

Theorem 2. Let K ⊂ Rm×n be a proper cone and Ω be a
convex subset in a Banach space W . F,G : Ω → Rm×n
are Fréchet-differentiable strictly K-convex functions. Then
the generalized Bregman divergence DF associated with the
function F exhibits the properties:

1) DF (x, y) �K 0.
2) Dc1F+c2G(x, y) = c1DF (x, y) + c2DG(x, y) for con-

stants c1, c2 > 0.
3) DF (·, y) is K-convex for any y ∈ Ω.



The generalized Bregman divergence also exhibits a duality
property similar to the duality property of the classical Breg-
man divergence, that may be useful for many optimization
problems [12], [19].

Theorem 3. Let F : Ω → Rm×n be a strictly K-convex
function, where Ω ⊂ Rk is a convex subset. Choose K to be
the space of first quadrant Rm×n+ (space formed by matrices
with all entries positive). Let (F ?, x?, y?) be the Legendre
transform of (F, x, y). Then, we have that:

DF (x, y) = DF?(y?, x?). (19)

Via this theorem, it is possible to simplify the calculation
of the Bregman divergence in scenarios where the dual form
is easier to calculate than the original form. Mirror descent
methods, which have been shown to be computationally effi-
cient for many optimization problems [12], [20], leverage this
idea.

The generalized Bregman divergence also exhibits another
property akin to that of the classical Bregman divergence. In
particular, it has been shown that for a metric that can be
expressed in terms of the classical Bregman divergence then
the optimal error relates to the conditional mean estimator
[21]. Similarly, it can also be shown that for a metric that can
be expressed in terms of a generalized Bregman divergence the
optimal error also relates to the conditional mean estimator.
However, this generalization from the scalar to the vector case
requires the partial order interpretation of the minimization.

Theorem 4. Consider a probability space (S, s, µ). Let F :
Ω→ Rm×n be strictly K-convex as before and Ω is a convex
subset in a Banach space W . Let X : S → Ω be a random
variable with E [‖X‖] < ∞ and E [‖F (X)‖] < ∞. Let s1 ⊂
s be a sub σ-algebra. Then, for any s1-measurable random
variable y, we have that:

arg min
y

E [DF (X,Y )] = E [X|s1] , (20)

where the minimization is interpreted in the partial or-
dering sensing, i.e., if ∃Y ′ such that E[DF (X,Y ′)] �K
E[DF (X,E [X|s1])], then Y ′ = E [X|s1].

V. GRADIENT OF MUTUAL INFORMATION: A
GENERALIZED BREGMAN DIVERGENCES PERSPECTIVE

We now re-visit the gradient of mutual information for vec-
tor Poisson channel models and for vector Gaussian channel
models with respect to the scaling/channel matrix, under the
light of the generalized Bregman divergence.

The interpretation of the gradient results for vector Poisson
and vector Gaussian channels, i.e., as the average of a multi-
dimensional generalization of the error between the input
vector and the conditional mean estimate of the input vector
under appropriate loss functions, together with the properties
of the generalized Bregman divergences pave the way to the
unification of the various Theorems. In particular, we offer two
Theorems that reveal that the gradient of mutual information
for vector Poisson and vector Gaussian channels admit a

representation that involves the average of the generalized
Bregman divergence between the channel input X and the
conditional mean estimate of the channel input E [X|Y ] under
appropriate choices of the vector-valued loss functions.

Theorem 5. The gradient of mutual information with respect
to the scaling matrix for the vector Poisson channel model in
(1) can be represented as follows:

∇ΦI(X;Y ) = E [DF (X,E[X|Y ])] , (21)

where DF (·, ·) is a generalized Bregman divergence associ-
ated with the function

F (x) = x(log(Φx+ λ))T − [x, . . . , x] + [1, . . . ,1]T , (22)

where 1 = [1, . . . , 1]T .

Theorem 6. The gradient of mutual information with respect
to the channel matrix for the vector Gaussian channel model
in (5) can be represented as follows:

∇ΦI(X;Y ) = E [DF (X,E[X|Y ])] , (23)

where DF (·, ·) is a generalized Bregman divergence associ-
ated with the function

F (x) = ΦxxT . (24)

Atar and Weissman [10] have also recognized that the
derivative of mutual information with respect to the scaling for
the scalar Poisson channel could also be represented in terms
of a (classical) Bregman divergence. Such a result applicable
to the scalar Poisson channel as well as a result applicable
to the scalar Gaussian channel can be seen to be Corollaries
to Theorems 5 and 6, respectively, in view of the fact that
the classical Bregman divergence is a specialization of the
generalized one.

Corollary 2. The derivative of mutual information with re-
spect to the scaling factor for the scalar Poisson channel
model is given by:

∂

∂φ
I(X;Y ) = E [DF (X,E[X|Y ])] , (25)

where F (x) = x log(φx)− x+ 1.

Proof. By Theorem 5, we have F (x) = x log(φx)−x+1. It is
straightforward to verify that F (x) induces the scalar gradient
result.

Corollary 3. The derivative of mutual information with re-
spect to the scaling factor for the scalar Gaussian channel
model is given by:

∂

∂φ
I(X;Y ) = E [DF (X,E[X|Y ])] , (26)

where F (x) = φx2.

Proof. By Theorem 6, F (x) = φx2. (26) follows from a
simple calculation and the result from [2] that ∂

∂φI(X;Y ) =

φE[(X − E(X|Y ))2]



A. Algorithmic Advantages

Theorem 5 and 6 suggest a deep connection between the
gradient and the generalized Bregman divergence. Besides,
if a gradient is given in terms of a generalized Bregman
divergence, it is possible to simplify optimization algorithms
based on gradient-descent. Rather than calculating the gradient
itself, one may work directly on its dual form provided that
it is easier to calculate the dual function. This idea is behind
the essence of the mirror descent methods which have been
shown to be very computationally efficient [12], [20].

VI. APPLICATIONS: DOCUMENT CLASSIFICATION

The practical relevance of the vector Poisson channel model
relates to its numerous applications in various domains. We
now briefly shed some light on how our results link to one
emerging application that involves classification of documents

Let the random vector X ∈ Rn+ model the Poisson rates of
n count measurements, e.g. the Poisson rates of the counts of
words in a documents for a vocabulary/dictionary of n words.

It turns out that – in view of its compressive nature – it may
be preferable to use the model Y ∼ Pois(ΦX), where Φ ∈
{0, 1}m×n with m � n, rather than the conventional model
Y ∼ Pois(X) [9], as the basis for document classification. In
particular, each row of Φ defines a set of words (those with
row elements equal to one) that characterize a certain topic.
The corresponding count relates to the number of times words
in that set are manifested in a document.

The problem then relates to the determination of the “most
informative” set of topics, i.e. the matrix Φ. The availability of
the gradient of mutual information with respect to the scaling
matrix, which has been unveiled in this work, then offers a
means to tackle this problem via gradient descent methods.

VII. CONCLUSION

The focus has been on the generalization of connections
between information-theoretic and estimation-theoretic quan-
tities from the scalar to the vector Poisson channel model. In
particular, in doing so, we have revealed that the connection
between the gradient of mutual information with respect to
key system parameters and conditional mean estimation is an
overarching theme that transverses not only the scalar but also
the vector counterparts of the Gaussian and Poisson channel.

By constructing a generalized version of the classical Breg-
man divergence, we have also established further intimate links
between the gradient of mutual information in vector Poisson
channel models and the gradient of mutual information in
vector Gaussian channels. This generalized notion, which aims
to extend the range of the conventional Bregman divergence
from scalar to vector domains, has been shown to exhibit
various properties akin to the properties of the classical notion,
including non-negativity, linearity, convexity and duality.

By revealing the gradient of mutual information with respect
to key system parameters of the vector Poisson model, includ-
ing the scaling matrix and the dark current, it will be possible
to use gradient-descent methods to address several problems,
including generalizations of compressive-sensing projection

designs from the Gaussian [22] to the Poisson model, that are
known to be relevant in emerging applications (e.g. in X-ray
and document classification).
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