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ABSTRACT

Clustering is an important data processing tool for interpret-
ing microarray data and genomic network inference. In this
paper, we propose a non-parametric Bayesian clustering al-
gorithm based on the hierarchical Dirichlet processes (HDP).
The proposed clustering algorithm captures the hierarchical
features prevalent in biological data such as the gene express
data by introducing a hierarchical structure in the model. We
develop a Gibbs sampling algorithm based on the Chinese
restaurant metaphor. We conduct experiments on the yeast
galactose datasets and yeast cell cycle datasets by comparing
our clustering results to the standard results. The proposed
clustering algorithm is shown to outperform several popular
clustering algorithms by revealing the underlying hierarchi-
cal structure of the data. The experiments also show that the
proposed clustering algorithm provides more information and
reduces the unnecessary clustering fragments than the clus-
tering algorithm based on Dirichlet mixture model.

Index Terms— Hierarchical Dirichlet processes, Dirich-
let processes, clustering, microarray data

1. INTRODUCTION

With the development of the microarray technology, one often
needs various algorithms to investigate the gene functions and
regulation relations contained in the high-volume microarray
data. Clustering is considered to be an important tool for an-
alyzing the biological data [1]. The aim of clustering is to
group the data into disjoint subsets, where in each subset the
data show certain similarities to each other.

Numerous clustering methods have been proposed. One
large category can be characterized as the distance-based al-
gorithm. That is, a distance is first defined for clustering pur-
pose and then the clusters are formed based on the distances
of the data. Typical examples in this category include the
K-means algorithm and the self-organizing map algorithm.
These algorithms are based on simple rules, and they often
suffer from robustness issue, i.e., they are sensitive to noise
which is extensive in biological data.

Another important category of clustering methods is the
model-based algorithms. Specifically, data are assumed to

be generated by some mixture distribution. Each component
of the mixture corresponds to a cluster. However, the sepa-
rated estimations of the number of clusters and the mixture
parameters make this approach sensitive to noise. In order to
cope with the above sensitivity problem of the finite-mixture
model, one may set the prior by using the Dirichlet processes
[2]. Such kind of methods is often called the non-parametric
approach.

Hierarchical clustering is yet another more advanced ap-
proach, which groups together the data with similar features
based on the underlying hierarchical structure.

It is well-known that many genes share different levels of
functionalities. The resemblances of different genes are com-
monly represented at different levels of perspectives, e.g., at
the cluster level instead of individual gene level. In this case,
we desire to have a hierarchical clustering algorithm recog-
nizing the gene resemblances not at the single gene level but
at the higher cluster level, to avoid unnecessary fragmental
clusters that impede the proper interpretation of the biologi-
cal information.

In this paper, we propose a non-parametric Bayesian clus-
tering algorithm for gene expression data based on the hierar-
chical Dirichlet process (HDP) [3]. The HDP model incorpo-
rates the merits of both the infinite-mixture model and the hi-
erarchical clustering. The hierarchical structure is introduced
to allow sharing data among related clusters. Moreover, as
a non-parametric approach, our clustering method does not
need to assume a fixed number of clusters a priori.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We assume that the gene expression data are random samples
from some underlying distributions. All data in one cluster
are generated by the same distribution. Suppose that for the
mircoarray data, there are N genes in total. For each gene we
conduct M experiments. Let gji denote the expression of the
i-th gene in the j-th experiment, 1 ≤ i ≤ N and 1 ≤ j ≤
M . For each gji, we associate a latent membership variable
zji, which indicates the cluster membership of gji. That is, if
genes gji and gj′i′ are in the same cluster, we have zji = zj′i′ .
Note that zji is supported on a countable set such as N or Z.



For each gji, we associate a coefficient θzji
whose index is

determined by its membership variable zji. In order to have a
Bayesian approach, we also assume that for each coefficient
θk is drawn independently from a prior distribution G0

θk ∼ G0. (1)

The membership variable z = {zji}j,i has a discrete distribu-
tion

z ∼ π. (2)

We assume the each gji is drawn independently from a distri-
bution F (θzji

)
gji ∼ F (θzji), (3)

where θzji
is a coefficient associated with gji and F is a dis-

tribution family such as the Gaussian distribution family. In
summary, we have the following model for the expression
data

θk ∼ G0

z ∼ π

gji|zji, θk ∼ F (θzji). (4)

Instead of assuming a fixed number of clusters a priori,
one can assume infinite number of clusters to avoid the es-
timation accuracy problem on the number of clusters as we
mentioned earlier. Correspondingly in (4), the prior π is an
infinite discrete distribution. Again as in the Bayesian fash-
ion, we will introduce priors for all parameters. The Dirichlet
process is one such prior.

Recall that the Dirichlet distribution D(u1, . . . , uK) of
order K on a (K − 1)-simplex in RK−1 with parameter
u1, . . . , uK can be viewed as a random measure in the finite
discrete probability space. Let (X,σ, µ0) be a probabil-
ity space. A Dirichlet process DP(α0, µ0) with parameter
α0 > 0 is defined as a random measure: for any non-trivial
finite partition (χ1, . . . , χr) of X with χi ∈ σ, we have the
random variable

(DP(χ1), . . . ,DP(χr)) ∼ D(α0µ0(χ1), . . . , α0µ0(χr)).
(5)

One remarkable property of the Dirichlet process is that
although it is generated by a continuous process, it is discrete
(countably many) almost surely [2]. In other words, almost
every sample distribution drawn from the Dirichlet process is
a discrete distribution. As a consequence, the Dirichlet pro-
cess is suitable to serve as a non-parametric prior of the infi-
nite mixture model.

The Dirichlet mixture model uses the Dirichlet process as
a prior. The model in (4) can then be represented as follows:

gji|zji, θk ∼ F (θzji); (6)

θk is generated by the measure µ0

θk ∼ µ0; (7)

{zji} is generated by a Dirichlet process D(α0, µ0)

{zji} ∼ D(α0, µ0). (8)

Recall that D(α0, µ0) is discrete almost everywhere, which
corresponds to the indices of the clusters.

As we mentioned before, biological data such as the ex-
pression data often exhibit hierarchical structures. Recall that
in the statistical model (8), the clustering effect is induced by
the Dirichlet process D(α0, µ0). If we need to take into ac-
count different level of clusters, it is natural to introduce a
prior with clustering effect to the base measure µ0. Again in
this case, the Dirichlet process can serve as such prior. We
simply set the prior to the base measure µ0 as

µ0 ∼ D1(α1, µ1), (9)

where D1(α1, µ1) is another Dirichlet process. In this paper,
we use the same letter for the measure, the distribution it in-
duces and the corresponding density function as long as it is
clear from the context.

In summary, we have the following hierarchical Dirichlet
process model for the data:

µ0 ∼ D1(α1, µ1)
{zji}|µo, α0 ∼ D(α0, µ0)

α0, α1 ∼ Γ(a, b)
θk ∼ µ1

gji|zji, θk ∼ F (θzji), (10)

where Γ(a, b) is the Gamma distribution with fixed parame-
ters a, b. We assume that F and µ1 are conjugate priors. In
this paper, F is assumed to be the Gaussian distribution and
µ1 is the inverse Gamma distribution.

The aim for clustering is to determine the posterior prob-
ability of the latent membership variables given the observed
gene expressions

P (z|g), (11)

where g = {gji}j,i. Once we have the inference result in
(11), we can apply the maximum a posterior (MAP) criterion
to obtain an estimate of membership variable ẑ·i for the i-th
gene as

ẑ·i = arga max
∑

j

P (zji = a|g). (12)

3. INFERENCE ALGORITHM

In this section, we develop a Gibbs sampling algorithm to
solve the inference problem (11) by employing the Chinese
restaurant metaphor [4], which is a visualized characteriza-
tion for interpreting the Dirichlet process. We refer to [4]
for the proof and other details of the equivalence between the
Chinese restaurant metaphor and the Dirichlet processes.



In the Chinese restaurant metaphor for the HDP model
(10), we view {zji} as customers entering a restaurant se-
quentially. The restaurant has infinite number of rows and
columns of tables which are labeled by tji. Each zji will as-
sociate to one and only one table in the j-th row. We use
φ(zji) to denote the column index of the table in the j-th row
taken by zji, i.e., zji will sit at table tjφ(zji). If it is clear from
the context, we will use φji in short for φ(zji). The index of
the random variable θk in (10) is characterized by a menu
containing various dishes. Each table picks one and only one
dish from the menus {mk}k=1,2,..., which are drawn indepen-
dently from the base measure µ1. gji is drawn independently
according to the dish it chooses through the distribution F (· )
as in (10). We denote λ(tji) as the index of the dish taken
by table tji, i.e., table tji chooses dish mλ(tji). As before,
we may write λji in short of λ(tji). The HDP is reflected
in this metaphor such that the customers choose the tables as
well as the dishes in a Dirichlet process fashion. The cus-
tomers sitting at the same table are classified into one cluster.
Moreover, the customers sitting at different tables but order-
ing the same dish will also be clustered into the same group.
Hence the clustering effect is performed at the cluster level,
i.e., we allow “clustering among clusters”. We also introduce
two useful counter variables: cji denotes the number of cus-
tomers sitting at table tji; djk counts the number of tables in
row j serving dish mk.

Using the Chinese restaurant metaphor, instead of infer-
ring zji, we can directly infer φji and λji. We will sample
φ = {φ11, φ12, . . . } and λ = {λ11, λ12, . . . } from the pos-
terior distribution P (φ, λ|g). We can calculate the related
conditional probabilities as follows.

If a is a value that has been taken before, the conditional
probability of φji = a is given by

P (φji = a|φc
ji, λ, θ, α1, α0, µ1,g) ∝ cjafλja(gji|gc

ji),
(13)

where θ = {θji}j,i and λ = {λji}j,i. The superscript
c denotes the complement of the variables in its category,
i.e., gc

ji = {gj′i′}(j′,i′) 6=(j,i) and φc
ji = {φj′i′}(j′,i′)6=(j,i).

fλja(gji|gc
ji) denotes the conditional density of gji given all

other data generated according to menu mλja , which can be
calculated as

fλja(gji|gc
ji) =

∫ ∏
λj′φ

j′i′
=λja

F (gj′i′ |θ)µ1(θ)dθ
∫ ∏

j′i′ 6=ji,λj′φ
j′i′

=λja
F (gj′i′ |θ)µ1(θ)dθ

.

(14)
On the other hand, if a is a new value then we have

P (φji = a|φc
ji,λ, θ,g) ∝ α0[

Kja∑

k=1

∑
j djk∑

jk djk + α1
fk(gji|gc

ji)

+
α1∑

jk djk + α1

∫
F (gji|θ)µ1(θ)dθ]. (15)

We also have the following conditional probabilities for
λji. If a is used before, we have

P (λjφji = a|φ, λc
jφji

,θ, α1, α0,g) ∝ (
∑

j

dja)fa(gji|gc
ji);

(16)
otherwise we have

P (λjφji
= a|φ,λc

jφji
, θ, α1, α0,g) ∝ α1

∫
F (gji|θ)µ1(θ)dθ.

(17)
We now summarize the Gibbs sampling algorithm for the

HDP inference as follows.

• Initialization with randomly assignments of all the vari-
ables.

• For l = 1, 2, . . . , l0 + L,

– Draw samples of {φ(l)
ji } from their posteriors

P (φ(l)
ji = a|φ(l−1)c

ji ,λ(l−1), α
(l−1)
1 , α

(l−1)
0 ,g)

(18)
given by (13) and (15) using the Metropolis-
Hastings (M-H) algorithm [5].

– Draw samples of {λ(l)

jφ
(l)
ji

} from their posteriors

P (λ(l)

jφ
(l)
ji

= a|φ(l), λ
(l−1)c

jφ
(l)
ji

, α
(l−1)
1 , α

(l−1)
0 ,g)

(19)
given by (16) and (17) using M-H algorithm.

– Since P (α0|φ, λ, α1,g) = P (α0) and
P (α1|φ, λ, α0,g) = P (α1), simply draw sam-
ples of α

(l)
0 and α

(l)
1 from their prior Gamma dis-

tributions.

• Using the samples after the “burn-in” period

{φ(l), λ(l)}l0+L

l=l0+1 to calculate P̂ (φ, λ|g), which is
given by

P̂ (φji = a, λjφji = b) =
∑l0+L

l=l0+1 1{φ(l)
ji = a, λ

(l)

jφ
(l)
ji

= b}
L

, (20)

where 1(·) is the indicator function. Determine the
membership distribution P (z|g) from the inferred
joint distribution P̂ (φ,λ|g) by P (zji = a|g) =∑

b P̂ (λjb = a|g, φji = b)P̂ (φji = b|g).

• Calculate the estimation of clustering index ẑ·i for the
i-th gene by ẑ·i = arga max

∑
j P (zji = a|g).



4. EXPERIMENTAL RESULTS

In this section, we conduct experiment on the yeast galactose
datasets [6] and compare the HDP algorithm to the popular
MCLUST and SVM algorithms. We also perform experiment
on the yeast cell cycle data [7] and compare our result to that
in [1].

In order to compare the clustering performance of the
HDP algorithm to other methods, we use the Rand index (RI)
as the performance metric [8]. The RI is a measure of agree-
ment between two clustering results. It takes a value between
0 and 1. The higher is the score, the higher agreements it
indicates.

We conduct experiment on the yeast galactose data, which
consists of 205 genes. The true number of clusters based on
the functional categories is 4. We calculate the RI index be-
tween different clustering results to the result in [9], which is
regarded as the standard benchmark. The performances of the
algorithms under consideration are listed in Table 1.

Algorithm Rand Index Number of clusters
SVM 0.954 5

MCLUST 0.903 9
HDP 0.973 3.8

Table 1. Clustering performance of HDP, MCLUST and
SVM on the yeast galactose data.

It is seen that the HDP algorithm performs the best among
the three algorithms. Unlike the MCLUST algorithm which
produces far more clusters than 4, the average number of clus-
ters given by the HDP algorithm is very closed to the “true”
value 4.

We next apply the proposed HDP clustering algorithm on
the Yeast cell cycle dataset, which has been used widely for
testing the performances of clustering algorithm. We resort
to the MIPS database [10] to determine the functional cate-
gories for each cluster. After applying the cell-cycle selection
criterion in [1], we find that there are 126 genes identified by
proposed HDP algorithm but not discovered in [1]. We list
in Table 2 the numbers of newly discovered genes in various
functional categories.

Note that in [11] a Bayesian model with infinite number
of clusters is proposed based on the Dirichlet process. The
model in [11] is a special case of the HDP model proposed
in this paper when there is only one hierarchy. In terms of
discovering new gene functionalities, we find that the perfor-
mances of the two algorithms are similar, as the method in
[11] discovered 106 new genes compared to the result in [1].
However, by taking the hierarchical structure into account, the
total number of clusters found by the HDP algorithm is sig-
nificantly smaller than that given in [11] which is 43 clusters.
The HDP clustering consolidates many fragmental clusters,
which may provide an easier way to interpret the clustering
results.

Function categories Number of new genes
Cell cycle and DNA processing 20

Protein synthesis 25
Protein fate 4

Cell fate 12
Transcription 8

Unclassified protein 57

Table 2. Numbers of newly discovered genes in various func-
tional categories by the proposed HDP clustering algorithm.
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d’Été de Probabilités de Saint-Flour XIII, pp. 1–198,
1985.

[5] S. Brooks, “Markov chain Monte Carlo method and its
application,” J. of the Royal Stat. Soc., vol. 47, no. 1, pp.
69–100, 1998.

[6] K.Y. Yeung, M. Medvedovic, and R.E. Bumgarner,
“Clustering gene-expression data with repeated mea-
surements,” Genome Biology, vol. 4, no. 5, pp. R34,
2003.

[7] P.T. Spellman et al, “Comprehensive identification of
cell cycle-regulated genes of the yeast saccharomyces
cerevisiae by microarray hybridization,” Mole. Bio. of
the Cell, vol. 9, no. 12, pp. 3273, 1998.

[8] L. Hubert and P. Arabie, “Comparing partitions,” Jour-
nal of Classification, vol. 2, no. 1, pp. 193–218, 1985.

[9] M. Ashburner et al, “Gene ontology: tool for the unifi-
cation of biology,” Nature Genetics, vol. 25, no. 1, pp.
25–29, 2000.

[10] H.W. Mewes et al, “MIPS: a database for genomes and
protein sequences,” Nucleic Acids Research, vol. 30, no.
1, pp. 31–34, 2002.

[11] M. Medvedovic and S. Sivaganesan, “Bayesian infinite
mixture model based clustering of gene expression pro-
files,” Bioinformatics, vol. 18, no. 9, pp. 1194–1206,
2002.


