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ABSTRACT

The gene deletion data is a type of gene expression data,
which is obtained by deleting each gene consecutively from
the network and measuring the fitness of the remaining net-
work under various environmental conditions. Compared
to the microarray data, the deletion data is much easier and
economical to obtain. The gene tag technology has enabled
the deletion data to be largely available for various regula-
tory networks. However, very few inference algorithms are
proposed for the deletion data in spite of its advantages. In
this paper, we propose an inference algorithm based on gene
deletion data. The proposed inference algorithm capture the
dynamical and non-linear natures of the regulatory networks.
We conduct experiment on the GAL network to demonstrate
the performance of the proposed algorithm. The proposed
algorithm has been shown to serve as a good alternatives
for exploring various regulatory networks other than using
microarray data.

Index Terms— Gene deletion, unscented Kalman filter,
microarray

1. INTRODUCTION

The inference of gene regulatory networks have become an at-
tracting research area in recent years thanks to the availability
of DNA microarray technology [1]. The vast amount of data
obtained by the microarray technology enables the possibility
of accurate estimation of gene regulatory network structures,
which has been proven to be an important basis for medi-
cal diagnosis and treatment. It is well-known that gene ex-
pressions are inherently stochastic. Therefore the expressions
for genes can be viewed as stochastic time-series data. The
goal of the inference algorithm is to discover the connectivity
structure based on these time-series data.

Inference algorithms vary for different modelings of the
network. There are a number of modelings proposed for the
regulatory networks [1, 2, 3]. One category of these models
quantizes the expressions to binary numbers and views the
structures of network as Boolean constraints. Another cat-
egory considers the network in continuous time with intro-
ducing the differential equations. Beside of these approaches,

the models from control and stochastic differential equation
point of view are also popular, which include the state-space
and stochastic model.

The cost of microarray technology has reduced signifi-
cantly in the past few years with the advancement of technol-
ogy. However, current experimental cost still hinders the pos-
sibility of acquiring sufficient data especially for large-scale
genome networks. Meanwhile, the idea of deleting genes se-
quentially from the network and its experimental technique
have attracted many attentions recently [4]. The gene deletion
data usually measures certain factor such as growth rate un-
der various experimental conditions after sequentially delet-
ing one gene from the network. Compared to traditional mi-
croarray technology, the deletion data is largely available for
various networks such as the yeast Saccharomyces cerevisiae.

Very few systematical models and inference algorithms
are proposed for the regulatory networks via the deletion data,
to our best of knowledge. Some results are obtained by visual
inspections or relatively naive strategies. As we mentioned
before, because of the increasing popularity of deletion data,
an inference algorithm utilizing the deletion data is needed.
The inference result can be used as an alternative way for un-
derstanding regulatory networks. It can also be employed to
find a good initialization for further inference using the valu-
able and limited microarray data, whose performance can be
significantly improved by starting from a good initialization.

In this paper, we propose a dynamic model and inference
algorithm for gene regulatory networks based on the gene
deletion data. We resort to the unscented Kalman filter (UKF)
approach to estimate all the parameters. We also provide ex-
perimental results for the proposed algorithm on the Saccha-
romyces cerevisiae data. We have compared our inferred re-
sults to some known facts for justification of the accuracy.

2. SYSTEM MODEL

We first provide a model for microarray data, on which we
will derive the system model under gene deletion data. Con-
sider a gene regulatory network with total N genes. Let gi(k),
i = 1, . . . , N , k = 1, 2, . . . , M denote the gene expression
level for the i-th gene at time k. For observation or measure-



ment data xi(k) for gi(k) at time k, we model it as

xi(k) = gi(k) + vi(k), (1)

where vi(k) is the observation noise at time k for i-th gene.
We denote all the expression levels of the network as a vec-
tor g(k) = [g1(k), . . . , gN (k)]T , the observation vector as
x(k) = [x1(k), . . . , xN (k)]T and noise vector as v(k) =
[v1(k), . . . , vN (k)]T . We assume all the vectors v(k) for
k = 1, . . . , M are indepedent and jointly Gaussian with zero
mean and variance matrix R(k).

We follow the discrete-time gene regulation model pro-
posed in [5], where the regulatory functions among all the
genes are

gi(k+1) =
N∑

j=1

aijgj(k)+
N∑

j=1

bijfj(gj(k), µj)+Ii +wi(k),

(2)
for i = 1, . . . , N , where aij denotes the linear regulation co-
efficient from gene j to gene i; bij denotes the non-linear reg-
ulation coefficient from gene j to gene i; fj is the non-linear
function for gene j which is given by

fj(gj , µj) =
1

1 + e−µjgj
, (3)

µj is the parameter to be inferred; Ii denotes the sys-
tem expression bias for i-th gene which will be inferred
later. The noise vectors w(k) = [w1(k), . . . , wN (k)]T for
k = 1, 2, . . . ,M are assume to be jointly Gaussian with zero
mean and variance Q(k). We also assume that they are inde-
pendent to all V(k). We denote A = [a11, a12, . . . , aNN ]T ;
B = [b11, b12, . . . , bNN ]T ; I = [I1, . . . , IN ]T and µ =
[µ1, . . . , µN ]T .

The goal for inference is to estimate all the unknown pa-
rameters in the model. The equations (1) and (2) determine
the dynamic of the system for acquisition of the microarray
data. However, necessary changes are required to model the
acquisition of deletion data. After we fix the labeling of in-
dices of the genes, we assume that we delete the gene sequen-
tially from 1 to N . At time step k, we delete gene with index
(k mod N ) if k - N , or N otherwise.

Without loss of generality, we assume that when the sys-
tem is at time k, jk-th gene has been deleted. Note that the
index jk is determined as we mentioned in previous para-
graph. For the state-space model, all the gene expressions
evolve without participation of gene jk. Therefore we have
all the regulatory coefficients a·jk

(k) = 0 and b·jk
(k) = 0.

In other words, we view the system as a time-variant system.
The state of gene jk should remain unchanged since it has
been deleted from the network. The states and system coeffi-

cients equations can be summarized as

Ii(k + 1) = Ii(k) ∀i,
µi(k + 1) = µi(k) ∀i,

ai,jk
(k) = 0 ∀i,

bi,jk
(k) = 0 ∀i,

ai,j(k + 1) = ai,j(k), if j 6= jk,

bi,j(k + 1) = bi,j(k), if j 6= jk,

gi(k + 1) =
N∑

j=1

aij(k)gj(k) +
N∑

j=1

bij(k)fj(gj(k), µj)

+ Ii + wi(k), if i 6= jk,

gjk
(k + 1) = gjk

(k). (4)

The last two equations determine the current system coeffi-
cients, which will be augmented into the system states. Un-
like the case in microarray measurements, the measurements
in deletion datasets are obtained by measuring a factor which
is a function of all the remaining genes. In this paper, we as-
sume the measurement is a real number, which represents the
fitness of the remaining network. The model can be easily
adapted into higher dimensional measurement case. There-
fore the observation x(k) is

x(k) = f(g1(k), . . . , gN (k)) + V (k), (5)

where f : RN → R is the experimental function which usu-
ally is not known a priori. We denote R(k) as the variance
of V (k) as before. In order to estimate f , we will use various
basis to approximate it and augment the states equations for
estimation of the coefficients associated to those basis. The
radial basis approach has been shown to be more robust and
adaptive than Taylor’s expansion.

More specifically, we approximate f as

f(y) ≈
p∑

j=1

λjΦ(‖y − yp
j‖) + λT

0 y, (6)

where λi for i = 1, . . . , p and λ0 are the centers of the basis; p
is the total number of basis which is a fixed constant; Φ(x) :=√

c + x2 is the Hardy multi-quadratic function, where c > 0
is a constant. Let λ = [λT

0 , λ1, . . . , λp]T . All the coefficients
λi, i = 1, . . . , p and λ0 are parameters to be inferred which
will be combined into the state variables. Therefore, the new
augmented state variable is

y(k) = [gT (k),AT ,BT , IT , µT , λT ]T (7)

As a summary, the dynamical model we propose for reg-
ulatory network under the gene deletion data is

y(k + 1) = Fk(y(k)) + W(k)
x(k) = f(Iky(k)) + V (k), (8)



where Fk(·) is the system function described in (4); W(k) =
[w1, . . . , wN , 0, . . . , 0] is the augmented noise vector; Ik is
the selection matrix, i.e.,
Iky = [g1, . . . , gj?−1, 0, gj?+1, . . . , gN ]T , where the index ?
is determined by the time index k; V (k) is the Gaussian noise
as assumed before.

3. THE UNSCENTED KALMAN FILTER APPROACH
FOR INFERENCE

In previous section, we propose the system model for the
regulatory network based on the state-space model. In or-
der to infer all the unknown parameters, we utilize the UKF
approach [6]. UKF enjoys many advantages to the classical
extended Kalman filter (EKF) approach. The UKF is based on
the idea choosing sigma points from the unscented transform.
For a random vector x, let us consider it passing through a
non-linear transform y = h(x). In order to calculate the
mean and variance of y, we choose the sigma points Si, i =
0, . . . , 2R and their weights Wi as follow,

S0 = E(x),

Si = E(x) + (
√

(L + λ)Var(x))i i = 1, . . . , R,

Si = E(x)− (
√

(L + λ)Var(x))i−R i = R + 1, . . . , 2R,

W(m)
0 =

λ

L + λ
,

W(p)
0 =

λ

(L + λ)
+ (1− α2 + β),

W(m)
i = W(p)

i =
1

2(L + λ)
i = 1, . . . , 2R, (9)

where Var(x) is the variance matrix of random variable x;
(· )i denotes the i-th column of the input matrix; λ = α2(R+
κ)− R is the scaling parameter. β is a parameter to incorpo-
rate prior knowledge of x. Since we have the Gaussian noise
assumption, we choose κ = 0, β = 2 and α = 10−3. We re-
fer readers to [6] for specific choices of all these parameters.

In order to infer the model (8), we simply concatenate the
state variable y with the noise vectors W and V to form a
new augmented vector

ya(k) = [yT (k),WT (k), V (k)]T . (10)

We view the Fk(· ) and f(· ) as the non-linear transforms and
calculate the sigma points to approximate the mean and vari-
ance which will be used in the sequential updates. As we see
here, another advantage to the EKF approach is that we do
not require calculate the Jacobian or Hessian of the transform,
which makes the algorithm and mathematical derivations less
involved.

Now we provide the UKF based inference algorithm for
model (8) based on gene deletion data.

• Initialize the state variable with

ŷ(0) = 0,

P(0) = I,

ya(0) = [ŷT (0),0, 0]T ,

Var(ŷa(0)) =




P(0) 0 0
0 Q(0) 0
0 0 R(0)


 , (11)

where I is the identity matrix.

• For time step k = 1, 2, . . . , calculate the sigma points
{Sy

k−1,SW
k−1,Sv

k−1} for ŷ(k−1), W(k−1) and V (k−
1) respectively by (9), where {Sy

k−1,SW
k−1,Sv

k−1} de-
note the sigma matrices, each of which is obtained by
combining all the corresponding sigma point vectors as
columns together.

• Time update equations:

Sy
i (k|k − 1) = Fk((Sy

k−1)i) + (SW
k−1)i i = 0, . . . , 2R,

Ey
S(k) =

2R∑

i=0

W(m)
i Sy

i (k|k − 1),

VaryS(k) =
2R∑

i=0

W(c)
i (Sy

i (k|k − 1)− Ey
S(k))(Sy

i (k|k − 1)− Ey
S(k))T ,

Sx
i (k|k − 1) =

f(Ik(Sy
i (k|k − 1))i) + (SV

k−1)i i = 0, . . . , 2R,

Ex
S(k) =

2R∑

i=0

W(m)
i Sx

i (k|k − 1). (12)

In above equations, (· )i denotes the i-th column of the
input matrix as before.

• Measurement update equations:

VarxS(k) =
2R∑

i=0

W(c)
i (Sx

i (k|k − 1)− Ex
S(k))(Sx

i (k|k − 1)− Ex
S(k))T ,

Varyx
S =

2R∑

i=0

W(c)
i (Sy

i (k|k − 1)− Ey
S(k))(Sx

i (k|k − 1)− Ex
S(k))T ,

K = Varyx
S (k)VarxS(k)−1,

ŷ(k) = Ey
S(k) +K(x(k)− Ex

S(k)),

P(k) = VaryS(k)−KVarxS(k)KT ,

Var(ŷa(k)) =




P(k) 0 0
0 Q(k) 0
0 0 R(k)


 . (13)
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Fig. 1. Inference result for GAL regulatory network.

4. EXPERIMENTS

We apply the proposed inference algorithm to the GAL reg-
ulatory network. The GAL families are collection of genes
which control the utilization of galactose in yeast Saccha-
romyces cerevisiae. We use the gene deletion data from [7].
The one dimensional measurements are measured under dif-
ferent environmental conditions such as different concentra-
tions of galactose, Alkali, Sodium chloride, Sorbitol. etc.

In Fig. 1, we show the inferred network structures for lin-
ear and non-linear coefficients respectively. In order to eval-
uate the performance of the inference algorithm, we compare
our results to various known facts about the GAL network [8].

First it can be seen that from Fig. 1, GAL 1, 3, 4 and 80
globally have the most connectivities and largest connection
coefficients, which are in accordance with known facts that
they are the regulation genes in the network with other genes
regarded as the structural genes. Besides, we see that GAL 80
has a negative connection to GAL 3 and 4; GAL 4 has negative
connection to GAL 1 and 7, all of which coincide with the
facts that GAL 80 has negative regulations on GAL 3, 4 and
GAL 4 prevents transcriptions of GAL 1, 7.

Moreover, the connections between GAL 1, 2 and GAL 3
reflect the fact that GAL 2 and GAL 1 regulate GAL 3 by pro-
tein utilization pathway. We see that there is no direct con-
nection from GAL 11 to GAL 80 which also coincides with
the fact that GAL 11 does not have direct interaction to GAL
80.

We find the inference results miss or contradict to some
known facts about the network. However, most of these in-
consistencies are among the structural genes. The inferred
regulations among regulatory genes are fairly accurate. Be-
cause the inherent under-determined nature of this inference
problem may compromise the performance of inference. We
probably should not expect that the quality of inference can
match the inference via the microarray data. On the other
hand, the ampleness of data may remise that problem to some

extent. Nevertheless, we see that the proposed inference algo-
rithm provides a fairly satisfying result for the GAL network.
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