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ABSTRACT

Quantization is a widely used technique in signal processing.
The purpose of many quantization schemes is to faithfully re-
produce the input signals. However, in many situations, one is
more interested in comparison of different classes of signals
in order to classify them into different categories. The classifi-
cation criterion is based on comparing distances under certain
metric. For classical quantizers, although the individual quan-
tized signal may show high fidelity to its original signals, the
distance features characterizing different categories may not
be well reserved, which results in poor performance of classi-
fication in spite of relatively good reproduction of individual
signals. In this paper, we propose a special optimal quanti-
zation under the Lp norm distortion measure called Boosting
Quantization. The quantization is guaranteed to preserve the
distances of different classes. We provide a quantization al-
gorithm to generate the quantizer. We also derive several the-
oretical properties for the proposed quantization. Finally, we
provide numerical examples to illustrate our proposed boost-
ing quantization.

Index Terms— Quantization, classification.

1. INTRODUCTION

Quantization is a widely used technique and an important in-
termediate step in many signal processing systems [1]. It can
be seen as a function which maps a continuous input signal
to a discrete signal with finite number of representation lev-
els. The primary goal in classical quantization is to faithfully
reproduce the input signal, i.e. the quantized signal should
preserve the fidelity to the original signal. Lloyd and Max
proposed the optimal quantizer [2, 3] under mean square er-
ror measurement. Linde, Buzo and Grey proposed the vec-
tor quantizer [4]. A wide variety of vector quantizer algo-
rithms have been developed for speech, images, video, and
other signal sources. For example, in video trajectory analy-
sis, the quantization technique is adopted in order to bring the

observable information from a continuos to a symbolic level:
after an initial stage of feature extraction, some signal quanti-
zation and symbolic coding is typically computed. Once the
quantized discrete data is available, the similarity between se-
quences is evaluated adopting, among others, simple metrics
(e.g., Lp norms, Euler or Hausdorff distances, or string align-
ment algorithms) [5]. The authors of [6] present a complete
framework for motion-based video retrieval in which they
adopt the minimum cumulative square distance as a metric.

A parallel problem is the quantization for a noisy source
[7]. The problem can be viewed as trying to compress a dirty
source into a clean reproduction, or as an estimation of the
original source based on a quantized version of the noisy sig-
nal. The process is equivalent to a de-noising filter. Many
of these quantizers can be categorized as the Rate-distortion
quantizers [1].

In many situations, one is often more interested in com-
parison and classification of different classes of signals than
processing one individual signal class. Meanwhile, due to
the limit of storage, calculation and power, a quantization has
to be applied. In this case, we naturally desire the distances
among different classes to be preserved, or emphasized after
quantization. The classical goal of quantization which aims
to preserve fidelity to the original signal may not be effective
especially when we have restrictions on the number of quan-
tization levels.

In this paper, we provide a mathematical formulation for
the optimal quantization of degraded signals in order to pre-
serve Lp distance among different classes, which is called the
Boosting quantization. As we shall see later, the reason of
the naming is from the fact that this particular quantization
will not only save time and storage complexity, but also pre-
serve or enhance the fidelity under the Lp norm criterion. We
present a quantization algorithm to find the optimal quantiza-
tion given the statistical information of the signals. We also
show several theoretical properties of the boosting quantiza-
tion. We provide several numerical examples for illustrations
and justifications of the proposed algorithm.



2. BOOSTING QUANTIZATION PROBLEM AND ITS
QUANTIZATION ALGORITHM

2.1. Problem Formulation

Consider two real signals {X1(t)} and {X2(t)} as discrete-
time random processes, where t is the time index. We model
the observed signals Yi(t) as Yi(t) = Xi(t) + Ni(t) for i =
1, 2, where Ni(t) is the noise. Let Qt(x) denote a quanti-
zation scheme at each time instant t. Qt(x) is specified by
a set of region boundaries {(µl, µl+1]}l, and a set of recon-
struction values {ql}l, with l = 1, . . . , k. k is the number of
quantization levels. In the case of Lp fidelity criterion, we
propose our boosting quantizer as the optimal solution of the
following optimization problem:

max
∑

t

E(‖QD(t)‖p − ‖ND(t)‖p) (1)

where

ND(t) = ‖Y1(t)− Y2(t)‖p − ‖X1(t)−X2(t)‖p

QD(t) = ‖Qt(Y1(t))−Qt(Y2(t))‖p − ‖X1(t)−X2(t)‖p

In particular, the terms ‖ND(t)‖p and ‖QD(t)‖p correspond
to the fidelity of distances under Lp of the observed and quan-
tized signals to the original signals, respectively. The intu-
ition is that the quantized signals should emphasize or at least
maintain the differences among different signal classes than
the observed ones. In the paper, we denote the objective func-
tion in Eq. (1) given the quantization Q as f(Q) or simply f .
If f(Q) > 0 for some optimal quantization scheme Q, then it
is worthwhile to employ that quantization Q. In that case, we
call the optimal quantization scheme as the Boosting quanti-
zation since the quantization not only quantizes the signal but
also boosts the characterizing distance features for different
classes of signals. The final goal is to find the quantization
scheme optimizing the problem in (1).

Notice that it is enough to consider the quantization
scheme separately for each time instant. We will only con-
sider the optimization in (1) at one time instant for the rest of
paper.

2.2. Boosting Quantization Algorithm

In order to evaluate the optimal quantization scheme, the op-
timization problem of Eq. (1) is solved with respect to the pa-
rameters of Qk, i.e., (µl, µl+1] and ql with l = 1, . . . , k. We
propose the following quantization algorithm. Unfortunately,
since the optimization process involves the maximization of a
non-convex function, the algorithm may not converge to the
global optimal quantization: it only guarantees to converge to
a local optimal point. Since a closed form for the final so-
lution is not available, a gradient descent with line search is
used.

If the noise-free signal and noise statistics are known, the
ND term in Eq. (1) can be considered constant. Thus, the
initial optimization problem becomes

maxE(‖(‖Q(y1)−Q(y2)‖p − ‖x1 − x2‖p)‖p) (2)

The optimization is initialized with a uniform quantization
scheme, so that the regions are defined by equally spaced
µl, and the reconstruction levels ql+1 are the centroids of
each region. Our problem involves a multivariable optimiza-
tion (i.e., 2k + 1 variables, k number of quantization levels)
which is solved by computing an iterative single-variable op-
timization. In other words, the optimization is solved for each
single variable, and considering all the others fixed: when
optimizing the first region boundary µ1, all the boundaries
µl with l = 2, . . . , k and the reconstruction levels qm with
m = 1, . . . , k + 1 are kept fixed. The iteration process over
the considered 2k + 1 variables is stopped when a predefined
decreasing rate is achieved between successive function eval-
uations. The pseudo-code of proposed algorithm is listed in
Algorithm 1. Here, the quantities Φi(i), i = X1, X2, N1, N2

are the pdf functions of the noise-free signals and the corrupt-
ing noises, respectively.

Algorithm 1 Pseudo code for the optimization
Require: ΦX1(X1), ΦX2(X2), ΦN1(N1), ΦN2(N2), k,

Stop
Ensure: Optimal µi, qj with i = 1, . . . , k − 1, j = 1, . . . , k

OldV al = 0, NewV al = 0
Uniform quantizer variables initialization
while 100× Oldval−NewV al

Oldval ≥ STOP do
OldV al ← NewV al
for i = 1 to k-1 do

Fix all µl with l = 1, . . . , k − 1 ∧ l 6= i
Fix all qm with m = 1..k
Find µi maximizing Eq. (2)

end for
for j = 1 to k do

Fix all µl with l = 1, . . . , k − 1
Fix all qm with m = 1, . . . , k ∧m 6= j
Find qj maximizing Eq. (2)

end for
NewV al ← Maximal value for Eq. (2) for this iteration

end while

3. THEORETICAL PROPERTIES OF BOOSTING
QUANTIZATION

As for the theoretical properties of boosting quantization, we
are interested in the following problems in proposed boosting
quantization:

1. When should we use the boosting quantization? i.e.,
is it always worthwhile to use a boosting quantization
scheme?



2. Does the performance always increase with the increas-
ing of the quantization levels?

In this section, we present answers to these problems by pro-
viding theoretical properties of boosting quantization. First of
all, the following theorem provides a sufficient condition for
applicability of boosting quantization.

Theorem 1. If the second or fourth order moment of noise is
sufficiently large, then we have f(Q) > 0 for some Q, i.e., it
is worthwhile to apply the boosting quantization.

In particular, such bound is determined by the noise prop-
erties only. In other words, if the variance, i.e., the power of
noise is large enough, the fidelity of differences among quan-
tized signals will be higher than the unquantized version.

Concerning the role of number of the quantization lev-
els, we show by following theorem that under the assumption
that all probability distribution functions are strictly increas-
ing, then f(Q) is strictly increasing with the number of quan-
tization levels as expected.

Theorem 2. Let k1 and k2 denote the number of quantization
levels of two quantization scheme Q1 and Q2 respectively.
If k2 > k1, for any optimal quantization Q1, there exists a
quantization Q2 such that f(Q2) > f(Q1).

Although we have shown that the performance of boost-
ing quantization is increasing with the number of quantization
levels, the robustness of the boosting quantization may dete-
riorate, even ignoring the increasing complexity of the algo-
rithm. The following results show that under certain circum-
stances, if the estimate of the distribution is not accurate, thus
not correctly reflecting the real one, then the error increases
with the number of quantization intervals.

Theorem 3. There exists a form of perturbation on the dis-
tribution function of signal such that if k2 > k1, for optimal
quantizations Q1 and Q2 for k1 and k2, we have f ′(Q2) ≤
f ′(Q1), where f ′ denotes perturbed f .

4. NUMERICAL EXAMPLES

In this section, we provide various numerical experiments
for illustrations and justifications of our proposed boosting
quantization and its properties. The validation of the pro-
posed framework has been carried out in the context of tra-
jectory analysis by adopting the Australian Sign Language [8]
datasets. The proposed boosting quantization is also applied
on the selected datasets to validate its applicability in both
classification and retrieval applications.

In order cope with 2 dimensional time series, and define
a proper quantization scheme, we applied the Centroid Dis-
tance Function (CDF) transformation as described in [9]. The
number of quantization levels has been fixed to 7 for each
cluster. After estimating the pdfs for each considered trajec-
tory class, we applied the optimization routine described in
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Fig. 1. Average distortion for the original representation, and
uniform and optimum quantization, as function of the noise
variance (ASL dataset).

Section 2 for the evaluation of the best quantization param-
eters for each cluster. In this phase, the optimization is ini-
tialized with a uniform quantizer centered about the mean of
the cluster distribution. The noise is considered to be addi-
tive and Gaussian. 25 different levels of noise power have
been considered for validation, ranging from 10% to 98% of
the original signal variance. Each level results in a specific
quantization scheme for each class.

Figure 1 depicts the average distortion for the considered
configurations (y-axis) w.r.t the noise power (x-axis). As it
can be observed, the best performance is achieved, in case of
low noise, by the numerical representation; on the contrary, as
the noise power increases, the average distortion for the nu-
merical representation rapidly grows, while the distortion for
the optimal quantized representation increases more slowly.

We apply the proposed quantization to a simple classifica-
tion problem involving the three different trajectory classes.
The classification accuracy in the three configurations (i.e.,
numerical, uniform quantization, and optimum quantization)
has been computed at different noise levels. The classification
process works as follows. The optimum and uniform quanti-
zation schemes are obtained for each class, as described in
Section 2, for 25 noise levels. For each trajectory class a
test set of 69 samples is considered and the centroid is se-
lected as the template for the cluster. Given an incoming path
corrupted by noise n, the distance between the trajectory and
each cluster template is evaluated in the three considered con-
figurations: the label of the template with minimal distance
from the incoming path is selected as the best match. Since
the original trajectory is corrupted by artificially generated
noise, to guarantee the statistics reliability of our results, the
algorithm is run 100 times for each configuration, and con-
siders the average value as the outcome of the analysis. Fig-
ure 2 reports the average classification accuracy for the three
classes as function of the noise variance, confirming that for
low noise power, the best classification results are through a
numerical representation. On the contrary, as the variance of
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Fig. 2. Classification performance: accuracy vs. noise vari-
ance (ASL).

the additive noise increases, the numerical representation per-
formance reduces dramatically, highlighting the advantages
of the symbolic representation.

In order to give experimental evidence to Theorem 2 of
Section 2, we solved the same classification problem consid-
ering quantization schemes with increasing number of levels.
Figure 3 depicts the curve for the classification accuracy in
case of 5, 7, and 10 quantization levels. It is possible to no-
tice how the values of the function f are strictly increasing
with the number of levels considered.

Finally, the same dataset has been used for retrieval pur-
poses. In this phase we considered all the trajectories from
all the classes as queries (a total of 69*3 = 207 queries), ob-
taining a ranked list for all of them. Leave-one-out strategy
has been chosen. The process has been iterated over the 25
noise levels, as before. In order to show the retrieval perfor-
mances at increasing noise power, at each noise variance level
the Mean Average Precision (MAP) of all queries has been
evaluated. The MAP is generally referred to as the geomet-
rical area under the Precision-Recall curve and it’s evaluated
according the formula in Eq. (3).

MAP =
∑N

r=1(P (r) ·W (r))
# of relevant documents

(3)

where N is the number of retrieved documents, W () is a bi-
nary function weighting the relevance at a given rank, and
P (r) is the precision evaluated at rank r. The retrieval results
are reported in Fig. 4 as MAP value (y-axis) vs. noise vari-
ance (x-axis). Also in this case, the performances in terms of
MAP confirm that for low noise power, the numerical repre-
sentation outperforms the symbolic representation, while for
increasing noise variance the optimal quantization offers the
best performances.
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